Equations and constants:

 $\begin{array}{ll} E = hv \mbox{ and } E = hc/\lambda & E = \mbox{ energy of one photon with a frequency of } v \\ c = \lambda v & c/\lambda = v & c = \mbox{ speed of light = } 3.0 \ x \ 10^8 \ m/s \ (meters \ per \ second \ h = \ Planck's \ constant = } 6.63 \ x \ 10^{-34} \ J-s \\ \lambda = \ wavelength \ in \ meters \\ v = \ frequency \ in \ Hz \ (waves/s \ or \ 1/s \ or \ s^{-1}) \end{array}$

NOTE On the test, $c = \lambda v$ $c/\lambda = v$ $c/v = \lambda$ will not be given – you have to isolate the variables to get these.

1. A photon has a frequency (v) of 2.68 x 10^6 Hz. Calculate its energy. (Ans: 1.777 x 10^{-27} J)

2. Calculate the energy (E) and wavelength (λ) of a photon of light with a frequency (ν) of 6.165 x 10¹⁴ Hz.

$$E = hv$$

= 6.63 x 10⁻³⁴ J-s x 6.165 x 10¹⁴ Hz
= 43.867395 x 10⁻³⁴ x 10¹⁴ Js/s
= 43.87 x 10⁻²⁰ J
= 4.387 x 10¹ x 10⁻²⁰ J
= 4.387 x 10⁻¹⁹ J
Answer: 4.387 x 10⁻¹⁹ J

3. Calculate the frequency and the energy of blue light that has a wavelength of 400 nm $(h = 6.62 \times 10^{-34} \text{ J-s}).$ (Ans: 7.500 x 10¹⁴ Hz)

$$v = c/\lambda$$

$$c = 3.000 \times 10^{8}$$

$$\lambda = 400 \times 10^{-9} m$$

$$v = 3.000 \times 10^{8}/400 \times 10^{-9} (m/s)m$$

$$= 3.000/4.000 \times 10^{8}/10^{-7} (m/s)s = /s$$

$$= 0.7500 \times 10^{15}/s$$

$$= 7.500 \times 10^{-1} \times 10^{15}/s$$

$$= 7.500 \times 10^{14}/s \text{ Note: } /s = Hz$$

Answer: 7.500 x 10¹⁴ Hz

4. Calculate the wavelength and energy of light that has a frequency of 1.5 x 10^{15} Hz. Ans: $\lambda = 2.0 \times 10^{-7}$ m $E = 9.95 \times 10^{-19}$ J

- 5. A photon of light has a wavelength of 0.050 cm. Calculate its energy. Ans: $E = 3.978 \times 10^{-23} \text{ J}$
- 6. Calculate the number of photons having a wavelength of 10.0 μm required to produce 1.0 kJ of energy.
 Ans; 5.000 x 10²¹ photons
- 7. Calculate the total energy in 1.5 x 10^{13} photons of gamma radiation having $\lambda = 3.0 \times 10^{-12}$ m. Part 1: Calculate the Energy of ONE Photon Part 2: Calculate total energy of 1.5 x 10^{13} photons

Part 1:

 $E = hc/\lambda$ = 6.63 x 10⁻³⁴ J-s x 3.000 x 10⁸ m/s / 3.0 x 10⁻¹² m = 6.630 x 10⁻³⁴ x 10⁸ x 10¹² Jsm/ms = 6.630 x 10⁻¹⁴ J = 6.630 x 10¹ x 10⁻¹⁴ J = 6.630 x 10⁻¹³ J Part 1 Answer: 6.630 x 10⁻¹³ J

Part 2:

1 Photon =
$$6.630 \times 10^{-13} \text{ J}$$

1.500 x 10^{13} = ? J
= (1.500 x $10^{13} \times 1$) x $6.630 \times 10^{-13} \text{ J/J}$
= (1.500 x 6.630)x $10^{13} \times 10^{-13}$
= 9.945 J
Part 2 Answer: 9.945 J

8. Calculate the energy and frequency of red light having a wavelength of 6.80 x 10^{-5} cm. Ans: E = 2.940 x 10^{-19} J v = 4.4 $12x 10^{12}$ Hz

9. The wavelength of green light from a traffic signal is centered at 5.20×10^{-5} cm. Calculate the frequency.

$$\begin{split} \lambda &= c/\nu \\ C &= 3.000 \ x \ 10^8 \\ \nu &= 5.20 \ x \ 10^{-5} \ Hz \\ \lambda &= 3.000 \ x \ 10^8 / 5.200 \ x \ 10^{-5} \ (m/s) \ Hz \ (\text{remember Hz is cycles/s}) \\ &= 15.600 \ x \ 10^3 \ (m/s)s = m \\ &= 1.560 \ x \ 10^1 \ x \ 10^3 = 1.560 \ x \ 10^4 \ m \end{split}$$

Answer: 1.560 x 10⁴ m

10. Calculate the frequency of light that has a wavelength of 4.25 x 10^{-9} m. Ans: $v = 7.059 \times 10^{16}$ Hz.