

Static Electricity

□Created when electrons are transferred between objects **Ex:** shoes moving across carpet on a dry day generates charges (static). **Ex.** Clothes in a dryer Ex. Sliding across the car seat

Negative & Positive Charges Two types of charges are positive(+) and negative(-)

Come from atomic particles in an atom: electrons (-), protons (+), neutrons (neutral)

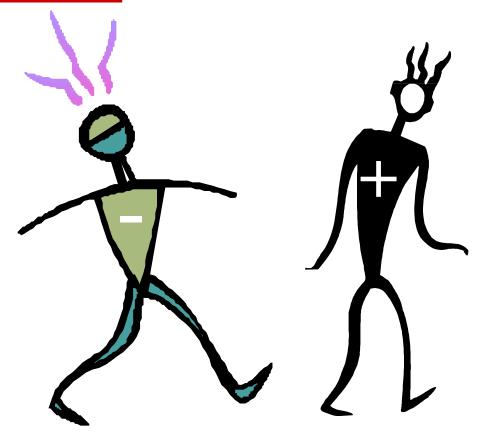
- Like Charges repel and Unlike (Opposite) charges attract
- Positive & Negative = attract

Positive & Positive = repel

Try this:

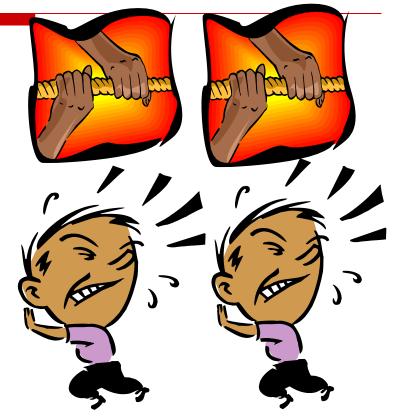
- □Get two pieces of tape about 5-6 cm in length
- Place each of them on the desk and remove them quickly
- Bring the two pieces of tape close together
- What happens?

Continue:


Take one of the pieces of tape and place on the desk again, then place the second piece on top of the first.

- □ Remove both pieces and separate.
- Bring the two pieces close together.
- What happens?

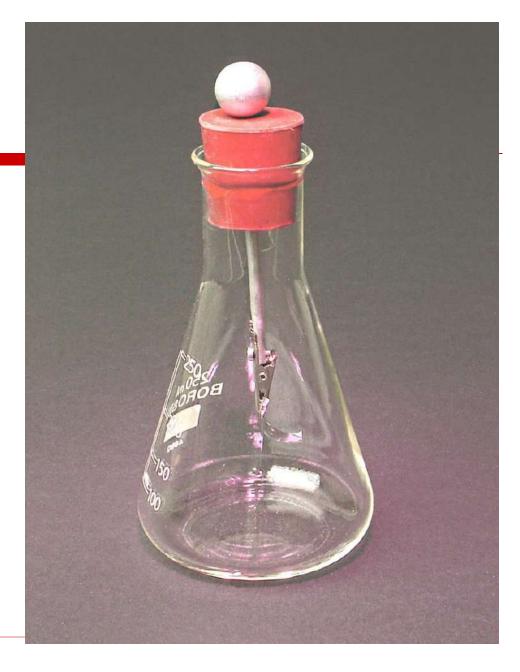
□ Why? Explain the difference.


Electric Charge

SI Unit for electric charge is coulomb (C)

Electric Force

□The force of attraction or repulsion between objects due to charge. □It depends on charge and distance.



Electric forces

- Electrical forces are much greater than gravitational forces because they can overcome gravity.
- Electrical forces can also attract or repel, unlike gravity.
- □ Electrical forces exert force over a distance.
- A device called an electroscope can be used to show charges.

Electroscope

□ Insert picture

Charging by Friction

- Involves rubbing two objects together
- One object loses electrons, one object gains electrons
- They become charged oppositely
 - Ex. Sliding across the car seat
 - Rubbing a balloon on your hair
 - Clothes in a dryer
 - Shoes on carpet

Charging by Friction

Materials get charged due to movement of electrons (e⁻) from one material to other. \Box The materials that receive e⁻ become negative and the materials that give e⁻ become positive.

Charging by Conduction
Involves two objects touching.
Charges transfer between two objects

Become charged alike and therefore the objects repel each other

http://www.regentsprep.org/R egents/physics/phys03/aelecla b/escope.htm

Charging by contact

Done by touching a neutral object with a charged object

Charging by Induction

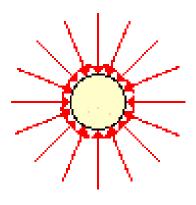
- Bringing a charged object near, but not touching another object
- Causes the electrons to either repel from a negative object or attract to a positive object

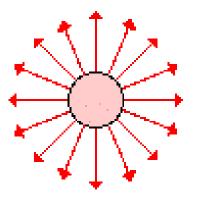
http://regentsprep.org/Regents/physi cs/phys03/aeleclab/induct.htm

Conductors Vs Insulators

CONDUCTORS	INSULATORS
Materials that	Materials that
allow electric	do not allow
charge to flow	free flow of
freely	charge
Ex: metals in the cords	Ex: plastic, silk, wool,
of electric wire	rubber

Electric Field

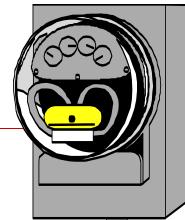

The region around a charged object where other charges experience an electric force.


It can be shown by drawing electric field lines.

Electric Field Lines

Scientists always use a positive field charge to draw lines around a charge object.

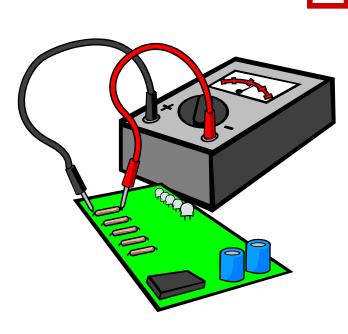
Electric Field Lines for Two Source Charges



Negative Source

Positive Source

Electric Current


□The rate (how fast) that electric charges move through a conductor. **SI** unit for current is ampere, A \Box 1A = 1C charge flow in 1sec

Potential Difference

- Remember Gravitational Potential Energy (GPE) – A ball will roll downhill from <u>High</u> GPE to <u>Low</u> GPE
- Electrical Potential Energy (EPE) – the change in potential energy per unit of charge.

Potential Difference cont.

Potential difference is the change that occurs as a charge moves from one place to another in an electric field.

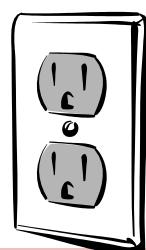
Potential Difference cont.

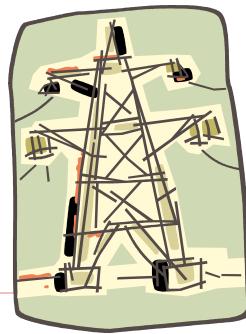
Potential difference is measured in DANGER volts, V. HIGH $\Box 1V = 1 J/C$ VOLTAGE PD is the change in the EPE divided by its charge.

Batteries

A way of converting chemical energy to electrical energy Charges move from one terminal to another in the same direction.

(Direct current or


Electric Current from Batteries


- Dry cells flashlights
- □Wet cells cars
- Electrons flow from negative to positive terminals – the rate of its flow determines current.

Electricity from Generators

- Called alternating current (AC)
- Used in our homes
- Current changes direction 60 times in one second (60 Hz)

Electrical Resistance

□The difference in the current between two conductors is due to their resistance.

□With a voltage of 120 V:'''

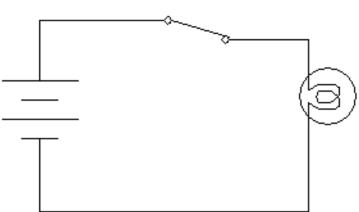
Resistance cont.

- And a 40 W bulb (dimmerhigh resistance)
- And a 100 W (brighter- low resistance)

Calculating Resistance

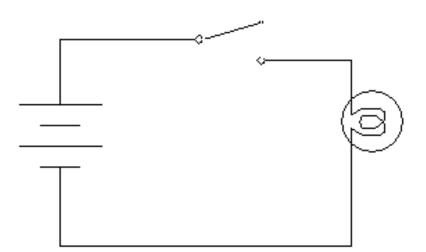
 $\Box Resistance = voltage$ $\Box R = V/I$ $\Box SI Unit is ohm (\Omega)$

Resistance cont.


- Conductors = low resistance
- Insulators = high resistance
- Semi-conductors =
 intermediate
- Super conductors = zero resistance (below a certain temperature)

Circuits

□One or more closed-loop paths through which charges can be conducted. □There are of two types – 1) Open Circuit 2) Closed Circuit


an unbroken

- path of conductors
- through which electric
- current flows
- A switch can be used to open or close a circuit

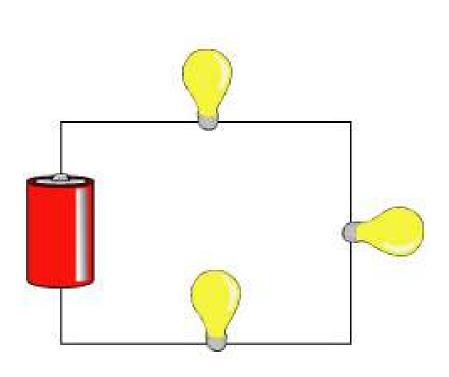
Open Circuit

□circuit with a
break in the
conductive
path, so no
current flows

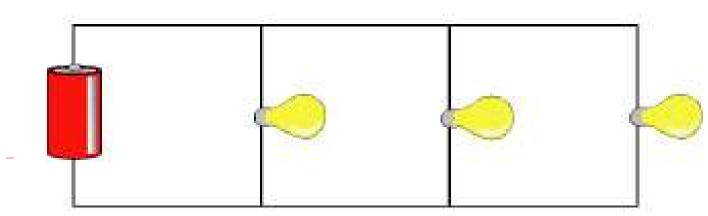
Schematic Diagram A diagram depicting the construction of the circuit or electrical apparatus. They use standard symbols.

A circuit can be drawn by using a combination of the symbols.

Schematic Diagram cont.


For symbols look at page

#


Series Circuit

□ Single path of current. Even one break can cause the circuit to fail. □I (same), V (differ)

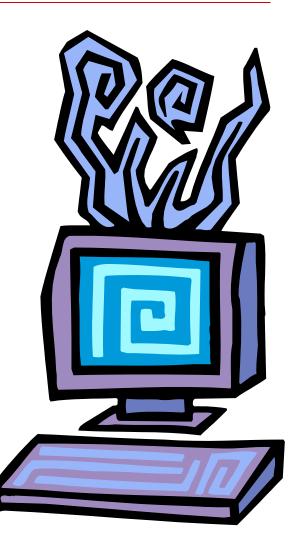
Parallel Circuit

 Multiple paths of current.
 A break in one path doesn't interrupt the flow of current in other paths

Electrical Energy

 Energy related to charges whether moving or at rest
 It is required to run electrical devices.

Electric Power □It is the rate at which electrical work is done.(P) \Box Power = Current x Voltage $\Box P = IV$ □The SI Unit of Power is Watt (W).


If V = IR and P = IV**D**Then: $\blacksquare P = I^2 R$

Calculating kW.h

- $\Box 1 \text{ kW.h} = 3.6 \times 10^6 \text{ J}$
- Cost of energy may vary between 5 to 20 cents / KWH
- Electrical meters are used to determine how much energy is used in given time.

Overload & Short Circuit

Overloaded Circuits can cause fire as they carry more than a safe level of current.

Short Circuits cont.

Worn insulation causes two wires to touch causing an alternating path of current called a short circuit.

Grounding appliances reduces the risk of shock from short circuit.

Fuses

□a ribbon of wire with a low melting point in an electrical device used to prevent overloading or short circuit. □It melts and blows out (opens the circuit) when the

current exceeds the limit.

Circuit Breakers

Made of magnet and bimetallic strip that respond to circuit overload by opening the circuit.

It acts as a switch and can be reset by turning the switch back on.

