#1: \triangle HEY is congruent to \triangle MAN by _____. What other parts of the triangles are congruent by CPCTC? _____ ≅ ____ _____ ≅ ____ _____ ≅ ____ #2: $\Delta CAT \cong$ _____, by _____ THEREFORE: ______ ≅ _____, by *C*P*C*T*C* ______ ≅ _____, by *CPCTC* ______ ≅ _____, by *CPCTC* #3: $AC \cong AR$ and $\angle 1 \cong \angle 2$ Given: $\angle 3 \cong \angle 4$ Prove: Proof: 1. $$AC \cong AR$$ 3. $$\angle CAL \cong \angle RAS$$ 4. $$\triangle LCA \cong \triangle SRA$$ 4. _ _ _ 5. #4: Given: $\angle NLM \cong \angle LNO$ and $\angle OLN \cong \angle MNL$ Prove: $\angle M \cong \angle O$ Proof: - 1 $\angle NLM \cong \angle LNO$ - 2. _____ - 3. _____ - 4. Δ LMN $\cong \Delta$ - 5. _____ - 2. Given - 3. Reflexive Property of \cong - 4. _____ - 5. _____ #5 Given: $AC \cong BC$ and $\overline{AX} \cong \overline{BX}$ Prove: $\angle 1 \cong \angle 2$ Proof: - 1. _____ 1. Given - 3. ∆*AXC* ≅ _____ - 4. _____ - 2. ______ 2. Reflexive Prop. of Congruence - 3. _____ - 4. _____ #6 Given: $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$ Prove: $\overline{XY} \cong \overline{ZW}$ Proof: | 1. | | | | |----|-------------------------------------|--|--| | 2. | $\overline{XZ} \cong \overline{XZ}$ | | | Given _____ 3. ∆XWZ ≅ _____ 3. _____ 4. _____ 4. _____