#1: \triangle HEY is congruent to \triangle MAN by _____. What other parts of the triangles are congruent by CPCTC?

_____ ≅ ____ _____ ≅ ____ _____ ≅ ____

#2:

 $\Delta CAT \cong$ _____, by _____

THEREFORE:

______ ≅ _____, by *C*P*C*T*C* ______ ≅ _____, by *CPCTC* ______ ≅ _____, by *CPCTC*

#3:

 $AC \cong AR$ and $\angle 1 \cong \angle 2$ Given:

 $\angle 3 \cong \angle 4$ Prove:

Proof:

1.
$$AC \cong AR$$

3.
$$\angle CAL \cong \angle RAS$$

4.
$$\triangle LCA \cong \triangle SRA$$

4. _ _ _

5.

#4:

Given: $\angle NLM \cong \angle LNO$ and $\angle OLN \cong \angle MNL$

Prove: $\angle M \cong \angle O$

Proof:

- 1 $\angle NLM \cong \angle LNO$
- 2. _____
- 3. _____
- 4. Δ LMN $\cong \Delta$
- 5. _____

- 2. Given
- 3. Reflexive Property of \cong
- 4. _____
- 5. _____

#5

Given: $AC \cong BC$ and $\overline{AX} \cong \overline{BX}$

Prove: $\angle 1 \cong \angle 2$

Proof:

- 1. _____ 1. Given
- 3. ∆*AXC* ≅ _____
- 4. _____

- 2. ______ 2. Reflexive Prop. of Congruence
 - 3. _____
 - 4. _____

#6

Given: $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$

Prove: $\overline{XY} \cong \overline{ZW}$

Proof:

1.			
2.	$\overline{XZ} \cong \overline{XZ}$		

Given

3. ∆XWZ ≅ _____

3. _____

4. _____

4. _____