Chemistry: Classifying Matter Name	<u> </u>
------------------------------------	----------

Classify each of the materials below. In the center column, state whether the material is a **pure substance** or a **mixture**. If the material is a pure substance, further classify it as either an **element** or **compound** in the right column. Similarly, if the material is a mixture, further classify it as **homogeneous** or **heterogeneous** in the right column. Write the entire word in each space to earn full credit.

Material	Pure Substance or Mixture	Element, Compound, Homogeneous, Heterogeneous
concrete	Mixture	Heterogeneous
sugar + pure water (C ₁₂ H ₂₂ O ₁₁ + H ₂ O)	Mixture	Homogeneous
iron filings (Fe)	Pure Substance	Element
limestone (CaCO ₃)	Pure Substance	Compound
orange juice (w/pulp)	Mixture	Heterogeneous
Pacific Ocean	Mixture	Heterogeneous
air inside a balloon	Mixture	Homogeneous
aluminum (AI)	Pure Substance	Element
magnesium (Mg)	Pure Substance	Element
acetylene (C ₂ H ₂)	Pure Substance	Compound
tap water in a glass	Mixture	Homogeneous
soil	Mixture	Heterogeneous
pure water (H ₂ O)	Pure Substance	Compound
chromium (Cr)	Pure Substance	Element
Chex mix	Mixture	Heterogeneous
salt + pure water (NaCl + H ₂ O)	Mixture	Homogeneous
benzene (C ₆ H ₆)	Pure Substance	Compound
muddy water	Mixture	Heterogeneous
brass (Cu mixed with Zn)	Mixture	Homogeneous
baking soda (NaHCO ₃)	Pure Substance	Compound

Chapter 17.1 Questions

1. How did you differentiate between an element and a compound? Give an example of each.

Elements will only have one capital letter, while compounds will have at least two. Element – C, Mg Compound – NaCl, $C_6H_{12}O_6$

2. How did you distinguish between a homogeneous mixture and a heterogeneous mixture? Give an example of each.

Heterogeneous – different materials can be distinguished easily, EX: - pizza Homogeneous – substances that are evenly blended throughout, EX - soda

- 3. Compare and contrast solution and colloid. Give an example of each. Solution homogeneous mixture of particles so small they cannot be seen with a microscope and will never settle, EX: vinegar, soda Colloid mixture that doesn't settle though it has larger particles, EX: milk, gelatin, paint, fog
- 4. You look at a bottle of juice in the refrigerator. It says "Shake well before using". How would you classify the juice? Why?
 Suspension it's a heterogeneous mixture containing a liquid where visible

particles settle to the bottom

Chapter 17.2 Questions

1. In terms of substances, explain why evaporation of water is a physical change and not a chemical change.

Evaporation of a liquid $(L \rightarrow G)$ does not change the substance.

- 2. Why is flammability a chemical property rather than a physical property? When something burns, a new material is formed.
- 3. What kind of change occurs when melting a substance? Boiling a substance? Why?

Physical - Melting and boiling are phase changes, which means they have the same chemical make up.

- 4. How does the law of conservation of mass apply to chemical changes? The same number of atoms present before the chemical change must be present after the chemical change.
- 5. When discerning a chemical vs. physical change, what do you look for? Give an example of each.

When discerning between a chemical and physical change, you may look for heating, cooling, bubbles (indicates gas is being released), light, sound, etc. If the material clearly stays the same, then it is a physical change.