Classification

80 1 03

2/14/201

SB3C

SB3

Students will derive the relationship between single-celled and multi-celled organism and the increasing complexity of systems.

© C. Examine the evolutionary basis of the modern classification system.

Essential Questions

Mhy do we classify living organisms?

Mhy has the system of classification changed?

What does the current method of classification tell us about the relationships between organisms?

Did You Know?

There are 13 billion known species of organisms

This is only <u>5%</u> of all organisms that ever lived!!!!!

New organisms are still being found and identified

What is Classification?

- Classification is also known as taxonomy, the science of naming and classifying organisms.
 - Arranging organisms based on their similarities
- Taxonomists are scientists that identify & name organisms

White oak: Quercus alba

Benefits of Classifying

- Accurately & uniformly names organisms
- Prevents misnomers such as starfish & jellyfish that aren't really fish

2/14/2013

SB3C

Early Taxonomists

- 2000 years ago,
 Aristotle was the first taxonomist
- Aristotle divided organisms into plants & animals
- Classified based on habitat —land, sea, or air dwellers
 - Problem: not all organisms fit into these limited categories

Carolus Linnaeus

1707 - 1778

- Called the "Father of Taxonomy"
- Social Classified organisms by their physical and structural similarities
 - Not based on DNA evidence
- Developed naming system called binomial nomenclature

2/14/2013

Standardized Naming

Binomial nomenclature used

Solution Uses Latin

Italicized in print

∞Underline when writing

Capitalize genus, but NOT species Turdus migratorius

American Robin 9

Binomial Nomenclature

Giant Panda Ailuropoda melanoleuca

Polar Bear Ursus maritimus

Grizzly Bear Ursus arctos

Genus vs Species

- A genus includes one or more physically similar species
 - Species in the same genus are thought to be closely related.
 - Genus name is always capitalized.
- A species descriptor is the second part of a scientific name
 - Always lowercase
 - Always follows genus name; never written alone

Tyto alba

Classification Groups

- Taxon (taxa-plural) is a group of organisms in a classification system
- There is a hierarchy of groups (taxa) from broadest to most specific
- Domain, Kingdom, Phylum, Class, Order, Family, Genus, species

Hierarchy-Taxonomic Groups

```
BROADEST TAXON

Kingdom

Phylum (Division – used for plants)

Class

Order

Family

Genus

Species
```


Dichotomous Keying

- Used to identify objects or organisms
- Characteristics are given in paired statements
- Read both statements and either go to another set of characteristics OR identify the organism

	Dichotomous Key - Family: Candius
la.	Candy is chewy2
	Candy is hard7
	Candy is wrapped3
2b.	Candy is not wrappedUrsa gummius
3a.	Candy is rounded4
3b.	Candy is not rounded5
4a.	Wrapper is all whiteSaltus taffinia
4b.	Wrapper is not all white5
5a.	Wrapper is brown and whiteTutus rollus
5b.	Wrapper is not brown and white6
6a.	Wrapper is silverChocolatus cyssan
6b.	Wrapper varies in colorStellaria explodus
7a.	Candy is spherical (ball-shaped)8
7b.	Candy is not spherical9
8a.	Candy is wrapped11
	Candy is unwrappedMandibulus crackus
9a.	Wrapper is transparent10
9b.	Wrapper tells the flavorJoyous rancheria
10a.	Wrapper is clearMintus stripus
10b.	Wrapper is yellowRanunculus scotchus
11a.	Candy is on a stickMoronus moronus
11h	Candy is not on a stick Spherus combustus

V F. ... 9... C. ... M...

2/14/2013 SB 11b. Candy is not on a stick......Spherus combustus

Example of Dichotomous Key

1a Tentacles present – Go to 2 1b Tentacles absent – Go to 3

2a Eight Tentacles – Octopus 2b More than 8 tentacles – 3

3a Tentacles hang down/upright – go to 4

3b Tentacles bent-Sea Anemone

4a Balloon-shaped body-Jellyfish 4b Body NOT balloon-shaped -Polyp Hydra

2/14/2013

16

Phylogeny

- Shows the evolutionary history for a group of species.
- Can be shown as branching tree diagrams.
 - Branches show how family members are related and how they are different.

Cladistics

- **SOC** Common method to make an evolutionary tree
 - Based on common ancestry
 - Species placed in order that they descended from common ancestor

Clades

- Clade- group of species that share a common ancestor
 - Each species shares some trait with ancestor
 - Each species has traits that have changed

Derived Characteristics and Nodes

Traits shared by clade members

- Basis for arranging species in cladograms
- More closely related species share more derived characteristics
- Represented on cladograms as hash marks
- Modes represent the most recent common ancestor of a clade

SB3C

Cladogram Example

Interpreting a Cladogram

Classification Methods

Similarities in DNA and RNA

 The genes of many organisms show important similarities at the molecular level.

Molecular Clocks

- Uses DNA comparisons to estimate the length of time that two species have been evolving independently.
- mtDNA is useful for closely related species because it is passed down unshuffled
- rDNA is useful for studying distantly related species and has a low rate of mutation

Domains

- Broadest, most inclusive taxon
- Three domains
 - Archaea and Eubacteria (Bacteria) are unicellular prokaryotes (no nucleus or membrane-bound organelles)
 - Eukarya are more complex and have a nucleus and membrane-bound organelles

Archaea

- Unicellular prokaryote
- Cell walls chemically different from bacteria
- Differences discovered by studying RNA
- Mown for living in extreme environments
 - Sewage treatment plants, thermal vents, etc.
- May have been the first cells to have evolved

Eubacteria (Bacteria)

™Unicellular Prokaryotes

One of largest groups on Earth

Classified by shape, need for oxygen, and diseases caused

Domain Eukarya is Divided into Kingdoms

- Protista (protozoans, algae...)
- Fungi (mushrooms, yeasts ...)
- Plantae (multicellular plants)
- Animalia (multicellular animals)

2/14/2013 SB30

Protista

Most are unicellular

Some are multicellular

Some are autotrophic, while others are heterotrophic

Fungi

Multicellular, except yeast

heterotrophs
(digest food
outside their body
& then absorb it)

Cell walls made of chitin

Plantae

Multicellular

Autotrophic

Absorb sunlight to make glucose

Photosynthesis

Cell walls made of cellulose

Animalia

Multicellular

heterotrophs
(consume food &
digest it inside their
bodies)

Feed on plants or animals

Kingdom	Organization	Type of Nutrition	Representative Organisms				
Protista	Complex single cell, some multicellular	Absorb, photo- synthesize, or ingest food	paramecium	euglenoid	slime mold	dino- flagellate	Protozoans, algae, water molds, and slime mold
Fungi	Some unicellular, most multicellular filamentous forms with specialized complex cells	Absorb food	black bread mold	yeast	mushroom	bracket fungus	Molds, yeast, and mushrooms
Plantae	Multi- cellular form with specialized complex cells	Photo- synthesize food	moss	fern	pine	nonwoody flowering plant	Mosses, ferns, nonwoody and woody flowering plants
Animalia	Multi- cellular form with specialized complex cells	Ingest food	coral ea	arthworm	blue jay	squirrel	Invertebr- ates, fishes, reptiles, amphibians, birds, and mammals

c. Domain Eukarya Eukaryotes, structurally diverse and organized into the four kingdoms depicted here.