*l ava Object Oriented Programming

What 1s 1t?

—
g Sat Mar 22

03:57:53
2025

!L What 1s the Java API

API stands for Application Programming Interface

The API 1s a large collection of ready-made software
components that provide many useful capabilities.

It has an index or collection of all Java packages, classes
and interfaces, with all of their methods, fields and
constructors, and how to use them.

It 1s grouped into libraries of related classes and
interfaces; these libraries are known as packages.

Where’s the API?

The latest version of java 1s 7. You can find the current version here .

http://docs.oracle.com/javase/7/docs/ap1/

77 v & [B- Google 23 A

Sign In " Teach ICT - Greenfoot ... EI Adobe Connect Centr... ;ﬁ UAlbany ICSI310 Sprin... %% YouTubeto mp3 Conv... ¥ Please Login Google: Exploring Co... MOOC Local

Java™ Plarform ¢
Use Tree Deprecated Index Help Smndard Ed. 7
Prev Mext Frames Mo Frames
4l Classes
Packages e
Java™ Platform, Standard Edition 7
ava.applet

ava aut API Specification
ava.awt.color
ava.awt.datatransfer
ava.awt.dnd
ava.awt.event W See: Desiption

This decument is the API specification for the Java™ Platform, Standard Edition.

4bstractAction _

4 bstractAnnotatiocnValueVisitord FEEALE dEELIE

4bstractAnnotationValueVisitor7 s . . .

AbstractBorder Jjava.applet Provides the classes necessary to create an applet and the classes an applet uses to communicate with its applet context.
AbstractButton java.awt Contains all of the classes for creating user interfaces and for painting graphics and images.

4bstractCel|Editor .

4bstractCollection Jjava.awt color Provides classes for color spaces.

SbstractColorCh P | R

" e mlar-noessans java.awt datatransfer Provides interfaces and classes for transferring data between and within applications.

4bstractDocument

AbsirsciDocument Attribute Context s et Drag and Crop is a direct manipulation gesture found in many Graphical User Interface systems that provides a m ism to transfer in ion bety two
AbstraciDocument Content o entities logically associated with presentation elements in the GUI.

4bstractDocument. ElementEdit .

AbstractElement\fisitorS java.awtevent Provides interfaces and classes for dealing with different types of events fired by AWT components.
AbstractElementVisitorT i ava.awt font . . .

AhstractExecutorSenvice 1 S Provides classes and interface relating to fonts.

AbstractintemuptibleChannel java.awt.geom Provides the Java 20 classes for defining and performing operations on objects related to two-dimensicnal geometry.
AbstractlayoutCache

AbstractlayoutCache ModeDimensions java.awt.im Frovides classes and interfaces for the input method framework.

4bstractlist R . .

shstractListModel java.awtim.spi Provides interfaces that enable the development of input methods that can be used with any Java runtime environment.
AbstractMap java.awtimage Provides classes for ceating and modifying images.

SbstractMap. SimpleEntry

4hstractMap. SimplelmmutableEntry java.awt.image.renderable Frovides classes and interfaces for oroducing renderina-independent imaass.

' C" B- cogte

ava™ Platferm
tandard Ed. 7

eS
?ac\(\a%i

Il Classes

AbstractAction
AbstractAnnotationValueVisitord
AhstractAnnotationValueVisitor7
AbstractBorder

4bstractButton
AbstractCellEditor

4hstractDocument
dbatraciDocument Attribute Context
dbztraciDocument Content
4hstractDocumentd

e

swcache.Nedelimensions

autList
Ahstractlisthodel
AbstractMap
4bstractMap. SimpleEntry
4hstracthMap. SimplelmmutableEntry

) Most Visited @ Getting Started | | SignIn || SignIn Y Teach ICT - Greenfoot .. 4 Adobe Connect Centr... IR} UAlbany ICSI310 Sprin... % YouTubeto mp3 Conv... Y Please Login [} Google:|

Overview | Paciage Class Use Tree Deprecated Index Help

Prev Mext Frames Mo Frames

Java™ Platform, Standar™ q:\e\Ns

API Specification

document is the AP| specification for the Java™r1atform, Standard Edition.

See: Desription
Package Description
java.applet Provides the classes necessary to oeste an applet ar

(ea _itiMpplet conte
java.awt Contains all of the classes for weatins P “gE5

java.awt.color Provides classes for 0! :\0“

java.awtdatatransfer Proyids a‘ —=n and within applications.

java awtdnd 0(w _-ature found in many Grephical User Interface systems that provigles a mechal

ﬁ . presentation elements in the GUI.
java.awtevent “

(]
javaaes E \ -ovides classes and interface relating to fonts,

_<= and classes for dealing with different types of events fired by AWT companents,

javaa Provides the Java 20 classes for defining and performing operations on objects related to two-dimensionigecmetry.
java.aw. Provides classes and interfaces for the input methed framework.

java.awtim.spi Provides interfaces that enable the development of input methods that can be used with any Java runtimllenvironmer
java.awtimage Provides classes for creating and modifying images.

java.awtimage.renderable

Provides classes and interfaces for oroducing rendering-indecendent images.

g General approach

B [f you know the name of the package, click it in the
upper left panel; or click All Classes

B Click on the class 1n the lower left panel

B Scroll 1n the right pane to find the summary of the
field, method, or constructor you want

B Or just read the general description

B For more information, click the link in the
summary to go to the detailed information

The Packages panel

(]

Javra™ Blatform

B Choose the package you
are interested 1n

B Or, choose All Classes
i M Classes in java.lang are

java.ewt.datatransfer

jave swt dnc automatically imported

java.awt.event W

into every program--you

AbsractAction don’t have to do it yourself

AbstredtAnnotationVelusVisitord

Al Classes

What Is a Package?
A package i1s a namespace that organizes a set of related classes and interfaces. You must
import the package into your program for the class that you want to use.

import java.util. *; This will import the entire java.util package.
import java.util. ArrayList; This will import the ArrayList class so you can use it.

{ The Classes panel

java.lang j
Interfaces
CHoneable

Comparable
Runnable

Classes

Boolean

Byte

Character

Character. Subset
Character.UnicodeBlocl
Class

ClazsLoader -
' el

B This panel shows both
classes and interfaces

B We haven’t yet talked about
interfaces

B Note that some classes have
names similar to primitive
types (Boolean, Byte,
Character). These are the
wrapper classes used with
ArrayList.

Random Class

If you scroll down the classes you will find Random.
Click and 1t will bring up the API information for the
Random Class.

|—
Overview Package [Class Use Tree Deprecated Index Help
| The random
All Classes Prev Class Next Class Frames Mo Frames 1 . .
Summary. Nested | Field | Constr | Method Detail: Field | Constr | Method C aSS 1S ln

Packages . .
java.applet java.util the JaVa.Utll
=1 _awt
E— Class Random package
QueuedJobCount va Obiect
RadialGradientPaint java-lang-ojec
Random java.util Random

Y 1d
RandomAccess .
RandomAccessFile All Implemented Interfaces: Oll WOU
Raster . .
RasterFormatException Sefializable lmpOI't that
RasterOp Direct Known Subclasses:
RC2ParameterSpec package to
RC5ParameterSpec SecureRandom, ThreadLocalRandom
Rdn
Readable use the
ReadableByteChannel .
Reader public class Random 1
ReadOnlyBufferException extends Object C1ass.
ReadOnlyFileSystemException . - . .
ReadPendingException implements Serializable
M Al A b | m =S

Boolean Class

Scroll and find the Boolean class. Click on 1t to bring up
the API information.

Google: Explering Co...

Bl Most Visited @ Getting Started | | Signin || Signln Y Teach ICT - Greenfoot ... 44| Adobe Connect Centr... M| UAlbany IC5I310 Sprin... &gz YouTube to mp3 Conv... W Please Login

Wt print Lal

Use: Tree Deprecated Index Help

Prev Class MNeit Class Framzs Mo Frames

Summary-Nesied | Figid | Commr| Mstod: Datsi Fisig | Conay | Memod

1avalsng

Class Booksan The Boolean class 1s
in the lang. package.

java.

All Implemented Interfaces:

public final class Boolean

You do not have to
Cioneahie extends Cbject .
gu::im’s implements Serializable, Comparable<Bocleans uSG an lmpOI't
ltersble
i e | | | statement for any of
In addition, this class provides many methods for converting aboolean to a String and 3 String to 2 boolean, as well 35 other constants

Readsble The Boolean class wraps & valee of the primitive type boolean in an object. An object of type Boolean contains a single field whose type is boo
.
the classes in the

JOKI D

s lang. package.

Sernialved Form

Field Summary

| Modifier and Type Field and Description
static Boolean FALSE

The Boolean obiect comesponding to the primitive value falae.
static Boolean TRUE

I The Boolean obiect cormesponding to the primitive value true.

The main information area for
4| classes

B General description of the class

B Field summary B In ecach case, the

“summary” 1s the first
B Method summary sentence of the “detail”

B Field detail
B Constructor detail
B Method detail

B Constructor summary

10

General Summary of class

The summary section gives information about the class

Class Boolean
jawa.lang. Object

jgwa.lang. Boolean
All Implemented Interfaces:

Serizlzable, Comparable<Boolean®

public final class Boolean
extends Ckhject
implementa Serializable, Comparable<Boclean>

The Boolean class wraps 3 walue of the primitive type booclean in an object. An object of type Boolean contains 3 single field whose type is boolean.
In zddition, this clzss provides many methods for converting 3 boclean to a String and 3 String to 3 boolean, as well a5 other constants and methods useful when desling with 3 boolean.
Since:
JDKLD
See Also:

Serialized Form

11

>|<

Field Summary Information

Field Summary

Modifier and Type Field and Description
static Boolean FALSE

The Boolean object comesponding to the primitive value false.
gtatic Boolean TRUE

The Boolean object comresponding to the primitive value true.
gtatic Class<Boolean> TYPE

The Class object representing the primitive type boolean.

A field is an attribute. A field may be a class's variable, an object's
variable. They are available to the class if it 1s a class variable or
any object created if it is an instance variable.

These would be global variables. They are seen throughout the
class. Variables created inside a method can only be seen inside a
method. They are local variables. 12

£ Constructors

A constructor has two purposes:

M A constructor is special method that creates an
object. When an object 1s created it calls the
constructor for the class.

BWhy have you been able to create objects before?
Java has a default constructor the class that 1s called 1f
you do not create one. The default constructor
requires on parameter information when created.

Once you create a constructor; however, you lose the
default constructor.

13

Constructor

Constructor Summary

Constructors

Constructor and Description

Boolean (boolean wvalue=)

Allocates a Boolean object representing the value argument.

Boolean (String s)

Allocates a Boolean object representing the value € rue if the string argument is not null and is
equal, ignoring case, to the string "trus™.

Let’s look at the first constructor for the class.
public Boolean(boolean value)

You would create an object like this:
Boolean bl = new Boolean(true); or
Boolean b2 = new Boolean(false);

14

Using the API

If I wanted to know how to create a object from the Random class I would go to
the Random class in the Java API.
http://docs.oracle.com/javase/7/docs/api/java/util/Random.html

I would look at the information for the constructor to see how to create the object.
Random generator = new Random();
Constructor Summary

?
Now I'would Topk at the methods that are i,
Available to use|and find the one I need. For example~s e

to create a randpm integer between 0 and a specified num.cll " ool ool v method.

nextInt (int n)
Returns a pseudorandontuniformly distribited i nt value between 0 (inclusive) and the specified value (exclusive), drawn from this random

number generator's sequence.
The object you created calls thg methods from This code produces a random number
its class. between 0 and n-1. (0 to 9) and the
result will be stored in the variable
! randomNumber. 15
int randomNumber = generator.nextInt(10);

http://docs.oracle.com/javase/7/docs/api/java/util/Random.html

{ Object Oriented Programming

B Java 1s an object oriented program.

16

Class Structure

1 /import statements go first
2 import java.util.*; Any classes you need to use must be imported except the
Im port Statement # import java.til. ArrayList; Java.lang package.
3
5 JiClass name goes next
[
3 7 ublic class Student
Class name line 7 — [
g
1o /IField Data. Every object created gets a copy. They are created private to protect the data
11
1z private String name; Instance variables, final variables, class
; 1z private int age; variables go in this area
Field Data e ! . g :
f per:ttEt!m ?::;F, Stri hool High School
e 15 rivate fina ic String school =" i chool™;
Line 12, 13, 14, 15 v 9 My Hig

17 *Constructor goes next. Constructor specifies how to create the object of the class.
1z *His a method that doesn't return anything. Neither void nor a return method. it creates the object and will
12 *initialize the variables in the field data section.

zo R

21

£z public Student()

gz { You would create a Student object like this:
Constructor ¢ name = "Student”; Student s1= new Student(); Each student created this way

25 age=0; would have the name “Student” age 0 and grade 0
There are 2 constructors zj }ﬂfa“9=“?|

25
O neis ove rloa d ed z3 public Student(String n, int a, int g)
constructor. oo q

1 name = n;

2z age = a; You would create a Student object like this:

23 grade = g; Student s2 = new Student(“Sally Smith”, 17, 12);

24 1 You must supply the name of the student, the age and the

grade in that order.

Field Data

TYPES OF VARIABLES
Global — Can be seen throughout the program

Local — used in a method and can only be seen in that
method.

*Instance Variable — private and every ~ ** private String hame;
pr e I age,

*object created receives its own copy. 14 private int grade;

*Final variable — Cannot be changed usually created static as
well. Usually static as well.

Static variable: one copy for the entire class. Every object
gets a copy but the same copy.

5 private final static String school = "My High School™;

Creating Variables

Instance variables: Declared in the Field area

e|nstance variables are declared in a class, but
outside a method, constructor or any block.

*Declared private

*Encapsulation / information hiding (you cannot
directly access the variable from another class. You
create methods that will change and return the
information from the variables.

Final Variables

e Variable declared as final cannot be changed. Itis a
constant.

 The word final is used and the variable is in all caps.

private final int Pl = 3.14;
private final int PCENT = .07;

Final variables are usually declared static as well.

private static final int Pl = 3.14;

Static Variables

* There would only be one copy of each class
variable per class, regardless of how many
objects are created from it.

e Static variables are rarely used other than being
declared as constants. Constants are variables
that are private, final and static. Constant
variables never change from their initial value.

private static int number = 0; // this variable will
can change but every object uses the same copy
of the variable. All objects have the same
number

Constructor

Purpose and function:
*Constructors have one purpose in life: to create an instance of a class.

*A constructor consist of the following format:

visibility type Class Name (parameter info)
public Student ();

The above is an example of a default constructor.

*Constructors are created with the visibility public. Otherwise you could not create an
object outside of the class.

*If you do not create a constructor for the class, Java supplies a default
constructor for you.

CONSTRUCTOR

Constructors also initialize the instance variables for each object when the object is
created. Each object gets a copy of the field data when the object is created.

Instance Variables

created in the field area: public Student() E=

{

12 private Stringname; — | . pa006e = "Student”:
1z private int age; ’

— .
12 private int grade; $ age = 0;

— grade = 0;
h

Student s1 = new Student();

// using the above constructor
Every student created would have a name “Student” age 0 and grade O

Every student would receive a copy of the final variable school “My High
School”

OVERLOADED CONSTRUCTORS WITH PARAMETER

INFORMATION

Constructors can also pass information to the object through the
parameter that will initialize the field data. When the object is

created the information must be passed in the same order as it is
listed in the parameter of the constructor

public Student(String n, int a, int g)

{

name = n;
age = a;
grade =g;

}

This allows each
student to be given
unique information
when it is created.

You would create an object like this:

Student s2= new Student(“Jim”, 17, 12);
(Stringn, inta, Stringg)

Student s2 name is Jim, age is 17 and grade is 12

Overloaded constructors

Constructors with parameter information

public Student(String name, int age, int grade)

name = name;

< ’ is!
age = age; < Can’t do this!
grade = grade;

public Student(String name, int age, int grade)

{

this.name = name;

this.age = age; - Can do this
this.grade = grade;

}

this reference

If you have the same
variable name in the
parameter as the
instance variable name
you must distinguish
between the two.

The keyword this refers
to the object.

*This objects color is
color.

*This objects legs are
legs

*This objects name is
name

Accessing information from the field

data

Instance variables are created
private. Therefore you cannot access
them directly from outside the class.
If you need to get the information or
change the information you must
create accessor and mutator
method.

You create methods called accessors
and mutators to get the information
and set the information for the
instance variables.

Information Hiding

Information about an
object is hidden to
protect the data. If others
could change your objects
data directly the data
would not be protected.
This is why they are
created private.

Methods are created to
change (set) and get
(return) the information
from the object. These
are public.

Accessor Method

Accessor Methods: Returns information from the instance
variables. The information returned can be a primitive data
type or an object. Accessor methods are always a return type
method. (notvoid) They are called getter methods

FORMAT: They are called getter methods

visibility returnType getVariable() {

public String getName() This method returns the
{ information from the instance
variable name

return name;

}

Mutator Methods

Methods created to change the data in the instance variables. The
information you want to change the variable to is passed through the
parameter. They are void. Must use the variable passed through the
parameter to set the information.

public void setName(String n)
v / Called setter methods.
name = n

}
o , Set data in the instance
public int setAge(int a)

{ variables.

age = a;

h

public int setGrade(int g)

d
grade = g;

}

\

//Add getter (accessor) and setter (mutator) for each

//instance variable.

public void setName(String n)

{

name = n;

}
public String getName()

{

return name;

}
public void setAge(int a)

{
age = a;
}
public int getAge()
{

return age;

}
public void setGrade(int g)

{
grade =g;

}
public int getGrade()

{

return grade;

}

Accessor Methods to return the data
stored in the instance variables. Itis
the only way to get information from
the variables. You must create an
accessor method.

They are usually named get and then
the variable they are returning
information from. They are always the
return type of the variable.

Mutator Methods:

Called setter methods. They allow you
to change the information in the
instance variables.

Set data in the instance variables.

Acessor Methods: red
Mutator methods: black

toString() method

String toString ()
Returns a string representation of the object.

The toString method comes from the Object class. The
Object class in the highest hierarchy in Java. All classes are
children of the Object class.

To print the information from an object you need to over
ride the toString method (write your own toString method
for the class).

If you do not override the toString method it will print out a
hashtag representation of the object. Studenti@esdd170

toString()

* |tis areturn method that returns whatever information you want about
the object.

public String toString()

{
return “Student Name: " + getName() + * age: ™ + getAge() +* grade: " + getGrade() +* " +Student.school;

e This would return the information from the methods getname(), getAge(),
getGrade() and the static class variable school.

* Remember the school variable is static and must called by the class name.

Student Name: Student age: 0 grade: 0 My High School
Student Name: Joe Johnson age: 17 grade: 11 My High School
-

Calling the methods and creating objects in
the main

Usually the class doesn’t contain a main method. Itisn’t very functional if it
does.

You create a driver class that contains the main. You create an object of the class
and it calls its methods.

OUTPUT

Welcome to DrJava. Working directory is F:\School year 2013 2014AP Computer Science
= run StudentDriver

public class StudemtDriver Student Name: Student age: 0 grade: 0 My High School

{ Student Name: Joe Johnson age: 17 grade: 11 My High School
public static void main(String[Jargs) Student Name: Lucy Lee age: 16 grade: 10 My High School
{ >|

Student 1 =new Student(; Student object created from default constructor

System.out.printin(s 1.tostring());

Printing information from s1 using toString()
s1.setName("Joe Johnson");

s1.setAge(17);

s1.setGrade(11); Using the methods to setName setAge and setGrade for s1.
System.out.printin(s1.toString()); Printing information again for sl

Student s2 = new Student("Lucy Lee”, 16, 10); :

Systom out priniin(s2 toString(): Student object created from overloaded constructor

}} Printing information from s2 using toString()

Creating a method to use instance
variables & methods

Create ArrayList of students and add it to the
field data

/IField Data. Every object created gets a copy. They are created private to protect the data

private String name;

private int age;

private int grade;

private final static String school = "My High School™;

private ArrayList<Student= stu;

public Student()
{

It is initialized in the constructors name = Studen:

age =0;

grade = 0;

stu = new ArrayList<Student={);
1

public Student(String n, int a, int g)
{
name = n;
age = a;
grade = g;
—— > stu = new ArrayList<Student=();
1

—

Creating methods to use with ArrayList

'z public void addStudents(Student students)
IE {
The AddStudents method will add a 'a _ stu.add(students);

student to the arraylist called stu in the 3
field area. _ .
public ArrayList=Student> getStudents()
/iField Data. Every object created gets a copy. They are created private rotect the data {
return stu;
private String name; }
private int age;

private imt grade;
private final static String school = "My Hig

ivete Arreyl ist<Student> at public void checkAge({Student student)
pri e AIT I Lidle L

{
if{student.getAge() == 15)
: {
The getStudents method will return the System.out.print(student.getName() + "is 18");
)

S @ @ 3t b p e M S ow@ o -1 thodh

ArrayList of students.

3

The checkAge(Student student)

Will check the age of the student. It calls
the getAge method. If the student is 18 it
will print out the name of the student by
calling the getName() method.

In the main

The student objects created sl, s2, s3
are added to the ArrayList stu in the
class by called the
addStudents(Student s) method.

You loop through the ArrayList by
using the getStudents method. It
returns the ArrayList so you use it as
an ArrayList. getStudent().size() will
return the size of the ArrayList from
the method getStudents.

You will print the arraylist by calling
the getSTudents().get(1).getName()
This returns just the name of the
objects in the ArrayList.

Loop through the arraylist and call the
checkAge method. The parameter is
passed a student object from the
arraylist

Student 53 = new Student(”James John", 18, 12);
s1.addStudents(s1);

sl.addStudents(s2);
sl.addStudents(s3);

for(int i = 0; i < s1.getStudents().size(); i++)

{System.uut.println{m.getStuderrtsﬂ.get{i}.getﬂame{}};
H

System.out.printin("n'n");

for(int i = 0; i < s1.getStudents().size(); i++)

{
s1.checkAge(s1.getStudents().get{i));

H
H

Joe Johnson
Lucy Lee

James John

James John is 18> |

