
Sat Mar 22
03:57:53
2025

Java Object Oriented Programming
What is it?

What is the Java API
API stands for Application Programming Interface

The API is a large collection of ready-made software
components that provide many useful capabilities.

It has an index or collection of all Java packages, classes
and interfaces, with all of their methods, fields and
constructors, and how to use them.

It is grouped into libraries of related classes and
interfaces; these libraries are known as packages.

2

3

Where’s the API?
The latest version of java is 7. You can find the current version here .

http://docs.oracle.com/javase/7/docs/api/

4

Overview

Classes
Main Information Area

Views

Packages

5

General approach

 If you know the name of the package, click it in the
upper left panel; or click All Classes

 Click on the class in the lower left panel
 Scroll in the right pane to find the summary of the

field, method, or constructor you want
Or just read the general description

 For more information, click the link in the
summary to go to the detailed information

6

The Packages panel

 Choose the package you
are interested in

 Or, choose All Classes
 Classes in java.lang are

automatically imported
into every program--you
don’t have to do it yourself

What Is a Package?
A package is a namespace that organizes a set of related classes and interfaces. You must
import the package into your program for the class that you want to use.

import java.util.*; This will import the entire java.util package.
import java.util.ArrayList; This will import the ArrayList class so you can use it.

7

The Classes panel

 This panel shows both
classes and interfaces

We haven’t yet talked about
interfaces

 Note that some classes have
names similar to primitive
types (Boolean, Byte,
Character). These are the
wrapper classes used with
ArrayList.

Random Class

8

If you scroll down the classes you will find Random.
Click and it will bring up the API information for the
Random Class.

The random
class is in
the java.util
package.

You would
import that
package to
use the
class.

Boolean Class

9

Scroll and find the Boolean class. Click on it to bring up
the API information.

The Boolean class is
in the lang. package.

You do not have to
use an import
statement for any of
the classes in the
lang. package.

10

The main information area for
classes

 General description of the class
 Field summary
 Constructor summary
 Method summary
 Field detail
 Constructor detail
 Method detail

 In each case, the
“summary” is the first
sentence of the “detail”

General Summary of class

11

The summary section gives information about the class

12

Field Summary Information

A field is an attribute. A field may be a class's variable, an object's
variable. They are available to the class if it is a class variable or
any object created if it is an instance variable.

These would be global variables. They are seen throughout the
class. Variables created inside a method can only be seen inside a
method. They are local variables.

13

Constructors

A constructor has two purposes:
A constructor is special method that creates an
object. When an object is created it calls the
constructor for the class.
Why have you been able to create objects before?
Java has a default constructor the class that is called if
you do not create one. The default constructor
requires on parameter information when created.
Once you create a constructor; however, you lose the
default constructor.

14

Constructor

Let’s look at the first constructor for the class.
public Boolean(boolean value)

You would create an object like this:
Boolean b1 = new Boolean(true); or
Boolean b2 = new Boolean(false);

Using the API
If I wanted to know how to create a object from the Random class I would go to
the Random class in the Java API.
http://docs.oracle.com/javase/7/docs/api/java/util/Random.html

I would look at the information for the constructor to see how to create the object.
Random generator = new Random();

Now I would look at the methods that are
Available to use and find the one I need. For example
 to create a random integer between 0 and a specified number I would use this method.

15

The object you created calls the methods from
its class.

 int randomNumber = generator.nextInt(10);

This code produces a random number
between 0 and n-1. (0 to 9) and the
result will be stored in the variable
randomNumber.

http://docs.oracle.com/javase/7/docs/api/java/util/Random.html

Object Oriented Programming

 Java is an object oriented program.

16

Class Structure
Import Statement

Class name line 7

Field Data
Line 12, 13, 14, 15

Constructor
There are 2 constructors
One is overloaded
constructor.

You would create a Student object like this:
Student s1= new Student(); Each student created this way
would have the name “Student” age 0 and grade 0

You would create a Student object like this:
Student s2 = new Student(“Sally Smith”, 17, 12);
You must supply the name of the student, the age and the
grade in that order.

Any classes you need to use must be imported except the
Java.lang package.

Instance variables, final variables, class
variables go in this area.

Field Data
TYPES OF VARIABLES

Global – Can be seen throughout the program
Local – used in a method and can only be seen in that
method.

•Instance Variable – private and every
•object created receives its own copy.

•Final variable – Cannot be changed usually created static as
well. Usually static as well.
•Static variable: one copy for the entire class. Every object
gets a copy but the same copy.

Creating Variables

Instance variables: Declared in the Field area
•Instance variables are declared in a class, but
outside a method, constructor or any block.

•Declared private

•Encapsulation / information hiding (you cannot
directly access the variable from another class. You
create methods that will change and return the
information from the variables.

Final Variables

• Variable declared as final cannot be changed. It is a
constant.

• The word final is used and the variable is in all caps.

private final int PI = 3.14;
private final int PCENT = .07;

Final variables are usually declared static as well.

private static final int PI = 3.14;

Static Variables
• There would only be one copy of each class

variable per class, regardless of how many
objects are created from it.

• Static variables are rarely used other than being
declared as constants. Constants are variables
that are private, final and static. Constant
variables never change from their initial value.

private static int number = 0; // this variable will
can change but every object uses the same copy
of the variable. All objects have the same
number

Constructor
Purpose and function:
•Constructors have one purpose in life: to create an instance of a class.

•A constructor consist of the following format:

visibility type Class Name (parameter info)
 public Student ();

The above is an example of a default constructor.

•Constructors are created with the visibility public. Otherwise you could not create an
object outside of the class.

•If you do not create a constructor for the class, Java supplies a default
constructor for you.

 CONSTRUCTOR
Constructors also initialize the instance variables for each object when the object is
created. Each object gets a copy of the field data when the object is created.

Instance Variables
created in the field area:

Student s1 = new Student();
// using the above constructor
Every student created would have a name “Student” age 0 and grade 0
Every student would receive a copy of the final variable school “My High
School”

 public Student()
 {
 name = "Student";
 age = 0;
 grade = 0;
 }

public Student(String n, int a, int g)
{
name = n;
age = a;
grade = g;
}

You would create an object like this:

Student s2= new Student(“Jim”, 17, 12);
 (String n , int a, String g)

Student s2 name is Jim, age is 17 and grade is 12

OVERLOADED CONSTRUCTORS WITH PARAMETER
INFORMATION
Constructors can also pass information to the object through the
parameter that will initialize the field data. When the object is
created the information must be passed in the same order as it is
listed in the parameter of the constructor

This allows each
student to be given
unique information
when it is created.

public Student(String name, int age, int grade)
{
this.name = name;
this.age = age;
this.grade = grade;
}

public Student(String name, int age, int grade)
{
name = name;
age = age;
grade = grade;
}

Overloaded constructors
Constructors with parameter information

Can’t do this!

Can do this

this reference

If you have the same
variable name in the
parameter as the
instance variable name
you must distinguish
between the two.

The keyword this refers
to the object.
•This objects color is
color.
•This objects legs are
legs
•This objects name is
name

Accessing information from the field
data

• Instance variables are created
private. Therefore you cannot access
them directly from outside the class.
If you need to get the information or
change the information you must
create accessor and mutator
method.

• You create methods called accessors
and mutators to get the information
and set the information for the
instance variables.

Information Hiding

Information about an
object is hidden to
protect the data. If others
could change your objects
data directly the data
would not be protected.
This is why they are
created private.

Methods are created to
change (set) and get
(return) the information
from the object. These
are public.

Accessor Method

Accessor Methods: Returns information from the instance
variables. The information returned can be a primitive data
type or an object. Accessor methods are always a return type
method. (not void) They are called getter methods

FORMAT:

visibility returnType getVariable() {

public String getName()
{
return name;
}

This method returns the
information from the instance
variable name

 They are called getter methods

Mutator Methods
Methods created to change the data in the instance variables. The
information you want to change the variable to is passed through the
parameter. They are void. Must use the variable passed through the
parameter to set the information.

public void setName(String n)
{
name = n;
}

public int setAge(int a)
{
age = a;
}

public int setGrade(int g)
{
grade = g;
}

Called setter methods.

Set data in the instance
variables.

 //Add getter (accessor) and setter (mutator) for each
 //instance variable.

 public void setName(String n)
 {
 name = n;
 }
 public String getName()
 {
 return name;
 }
 public void setAge(int a)
 {
 age = a;
 }
 public int getAge()
 {
 return age;
 }
 public void setGrade(int g)
 {
 grade = g;
 }
 public int getGrade()
 {
 return grade;
 }

Accessor Methods to return the data
stored in the instance variables. It is
the only way to get information from
the variables. You must create an
accessor method.

They are usually named get and then
the variable they are returning
information from. They are always the
return type of the variable.

Mutator Methods:
Called setter methods. They allow you
to change the information in the
instance variables.

Set data in the instance variables.

Acessor Methods: red
Mutator methods: black

toString() method

The toString method comes from the Object class. The
Object class in the highest hierarchy in Java. All classes are
children of the Object class.

To print the information from an object you need to over
ride the toString method (write your own toString method
for the class).

If you do not override the toString method it will print out a
hashtag representation of the object.

toString()
• It is a return method that returns whatever information you want about

the object.

• This would return the information from the methods getname(), getAge(),
getGrade() and the static class variable school.

• Remember the school variable is static and must called by the class name.

Calling the methods and creating objects in
the main

Usually the class doesn’t contain a main method. It isn’t very functional if it
does.

You create a driver class that contains the main. You create an object of the class
and it calls its methods.

OUTPUT

Student object created from default constructor

Printing information from s1 using toString()

Using the methods to setName setAge and setGrade for s1.

Printing information again for s1

Student object created from overloaded constructor

Printing information from s2 using toString()

Creating a method to use instance
variables & methods

Create ArrayList of students and add it to the
field data

It is initialized in the constructors

Creating methods to use with ArrayList

The AddStudents method will add a
student to the arraylist called stu in the
field area.

The getStudents method will return the
ArrayList of students.

The checkAge(Student student)
Will check the age of the student. It calls
the getAge method. If the student is 18 it
will print out the name of the student by
calling the getName() method.

In the main
The student objects created s1, s2, s3
are added to the ArrayList stu in the
class by called the
addStudents(Student s) method.

You loop through the ArrayList by
using the getStudents method. It
returns the ArrayList so you use it as
an ArrayList. getStudent().size() will
return the size of the ArrayList from
the method getStudents.

You will print the arraylist by calling
the getSTudents().get(i).getName()
This returns just the name of the
objects in the ArrayList.

Loop through the arraylist and call the
checkAge method. The parameter is
passed a student object from the
arraylist

