Chemistry UNIT 3

Name: Date:

Chemistry Unit 3

Atomic Theory and structure of an Atom

Definitions

- Model: A familiar idea used to explain unfamilar facts observed in nature.
- Theory: An explanation of observable facts and phenomena
 - To remain valid, models and theories must:
 - Explain all known facts
 - Enable scientists to make correct predictions

History of an Atom

Democritus

- Proposed the existence of an atom
- Word comes from the Greek word atomis which means not to cut or indivisible

Aristotle

- Rejected the idea of the atom
- Said matter could be cut continually

• Dalton's theory proposed that atoms:

- Are building blocks of matter
- Are indivisible
- Of the same element are identical
- Of different elements are different
- Unite in small, whole number ratios to form compounds

• J.J. Thomson

- Credited with the discovery of electron; a blow to Dalton's indivisible atom
- Proposed the plum pudding model of the atom: negatively charged electrons embedded in a ball of positive charge

• Rutherford's Gold Foil experiment:

- Aimed alpha particles at gold foil
- Most passed through
- A few particles were deflected
- Some particles bounced back

Rutherford's Experiment

- Most of the atom is empty space
- Dense positively charged core
- Planetary model

Bohr's Model of the Atom

- Nucleons- particles in the nucleus of atom
 - Protons
 - Neutrons
- Atomic number- number of protons in the nucleus of an atom
- Neutral atom- same number of protons (+) and same number of electrons(-)

Isotopes

- Isotopes- atoms of an element that have different numbers of neutrons
- Hydrogen-1

– _____ proton and _____ neutrons

• Hydrogen-2

– _____ proton and _____ neutrons

• Hydrogen-3

– _____ proton and _____ neutrons

Mass number

 Total number of protons and neutrons in an atom

- Carbon-14
- Neon-20

Opening

What is the difference between C-12 and C-14?

Particle Chart

Particle	Charge	Mass	Location
Proton	Positive	1 amu	nucleus
Neutron	Neutral	1 amu	nucleus
Electron	Negative	0	Electron cloud

Atomic mass

Average of the masses of all the element's isotopes

Subatomic particles

- # of protons = atomic number
- # of electrons = atomic number
- # of neutrons = mass number atomic number

Examples

- Iron Fe-56
 Oxygen-17
 He-4
- Calcium-40

Unit 3 Notes Bohr's Energy Levels

- Electrons in certain energy levels
- Low energy levels are closer to nucleus
- High energy levels are further from nucleus
- Ground state- all electrons are in lowest energy level possible

Excited Atom

Atom has absorbed energy
Excited state is unstable
Atom soon emits same amount of energy absorbed
Energy is seen as visible light

Wave Description of Light

- Wavelength (λ): distance between corresponding points on adjacent waves
- Frequency (f): the number of waves passing a given point in a given time
- $c = 3.0 \times 10^8 \text{ m/s}$, speed of light
- $c = f \lambda$

Ex.

What is the frequency of light if the wavelength is 6.0 X 10⁻⁷m?

Particle Description of Light

- Energy exists as particles called quanta or photons.
- E = hf
- h is a constant number
 Called Planck's constant.

The Modern View of Light

- Light has a dual nature
- Light may behave as a wave
- Light may behave as a stream of particles called quanta or photons.

Spectroscopy

- Spectral lines represent energy releases as electron returns to lower energy state
- Spectral lines identify an element
- Called Bright line spectrum of an element

Orbital

Region of space where an electron is likely to be found

Quantum Numbers

• n, l, m, s

Used to describe an electron in an atom

n

Principle quantum number

- Represents the main energy level of electron
- Is always a whole number
- Max. # of electrons in an energy level is $2n^2$
 - What is the maximum number of electrons that can be in the 5th main energy level? 2^{3} , 2^{3} , 2^{5} , = 0 electrons

• The 2nd quantum number

- Describes the orbital shape within an energy level
- Number of orbital shapes possible in energy level = n

Orbital shapes

- Designated s, p, d, f
- Level 1: s
- Level 2: s,p
- Level 3: s, p, d
- Level 4: s, p, d, f

5 = sphere p = dumbbell shape d =

How many electrons can each sublevel hold?

- s = 1 orbital X 2 electrons= 2 electrons
- p = 3 orbitals X 2 electrons = 6 electrons
- d = 5 orbitals X 2 electrons = 10 electrons
- f = 7 orbitals X 2 electrons = 14 electrons

m

• The 3rd quantum number

- Describes orientation of orbital in space
- x, y, z axis

• The 4th quantum number

- Describes spin of electron in orbital
- Hund's Rule- orbitals of equal energy are each occupied by one electron before any orbital is occupied by a second electron
- Pauli Exclusion Principle: No two electrons can have the same four quantum numbers.

Diagonal Rule

See worksheet