Chemistry Standards Checklist	
SCSh2. Students will use standard safety practices for all classroom laboratory and field	
investigations.	
a. Follow correct procedures for use of scientific apparatus.	
b. Demonstrate appropriate techniques in all laboratory situations.	
\square c. Follow correct protocol for identifying and reporting safety problems and violations.	
SCSh5. Students will demonstrate the computation and estimation skills necessary for analyzing data and developing reasonable scientific explanations.	
a. Trace the source on any large disparity between estimated and calculated answers to problems.	
\Box b. Consider possible effects of measurement errors on calculations.	
\Box c. Recognize the relationship between accuracy and precision.	
d. Express appropriate numbers of significant figures for calculated data, using scientific notation where appropriate.	2
e. Solve scientific problems by substituting quantitative values, using dimensional analys and/or simple algebraic formulas as appropriate.	sis
\Box SC1 Students will analyze the nature of matter and its classifications.	
a. Relate the role of nuclear fusion in producing essentially all elements heavier than helium.	
b. Identify substances based on chemical and physical properties.	
C. Predict formulas for stable ionic compounds (binary and tertiary) based on balance charges.	of
d. Use IUPAC nomenclature for both chemical names and formulas:	
 Ionic compounds (Binary and tertiary) 	
 Covalent compounds (Binary and tertiary) 	
 Acidic compounds (Binary and tertiary) 	
□ SC2 Students will relate how the Law of Conservation of Matter is used to determine chemico	I
composition in compounds and chemical reactions.	
\Box a. Identify and balance the following types of chemical equations:	
 Synthesis Decomposition Single Replacement 	
• Double Replacement • Combustion	
b. Experimentally determine indicators of a chemical reaction specifically precipitation gas evolution, water production, and changes in energy to the system.	,
□ c. Apply concepts of the mole and Avogadro's number to conceptualize and calculat	e
• Empirical/molecular formulas,	U
 Mass, moles and molecules relationships, 	
 Molar volumes of gases. 	
☐ d. Identify and solve different types of stoichiometry problems, specifically relating mass	5
to moles and mass to mass.	

of

- \Box e. Demonstrate the conceptual principle of limiting reactants.
- $\hfill\square$ f. Explain the role of equilibrium in chemical reactions.

\Box SC3 Students will use the modern atomic theory to explain the characteristics of atoms.
a. Discriminate between the relative size, charge, and position of protons, neutrons, and electrons in the atom.
b. Use the orbital configuration of neutral atoms to explain its effect on the atom's chemical properties.
\square c. Explain the relationship of the proton number to the element's identity.
d. Explain the relationship of isotopes to the relative abundance of atoms of a particular element.
e. Compare and contrast types of chemical bonds (i.e. ionic, covalent).
\Box f. Relate light emission and the movement of electrons to element identification.
\Box SC4. Students will use the organization of the Periodic Table to predict properties of elements.
a. Use the Periodic Table to predict periodic trends including atomic radii, ionic radii, ionic radii, ionization energy, and electronegativity of various elements.
b. Compare and contrast trends in the chemical and physical properties of elements and their placement on the Periodic Table.
\square SC5. Students will understand that the rate at which a chemical reaction occurs can be
affected by changing concentration, temperature, or pressure and the addition of a
catalyst.
a. Demonstrate the effects of changing concentration, temperature, and pressure on chemical reactions.
b. Investigate the effects of a catalyst on chemical reactions and apply it to everyday examples.
C. Explain the role of activation energy and degree of randomness in chemical reactions.
SC6. Students will understand the effects motion of atoms and molecules in chemical and physical processes.
\Box a. Compare and contrast atomic/molecular motion in solids, liquids, gases, and plasmas.
b. Collect data and calculate the amount of heat given off or taken in by chemical or physical processes.
c. Analyzing (both conceptually and quantitatively) flow of energy during change of state (phase).
\Box SC7. Students will characterize the properties that describe solutions and the nature of acids
and bases.
\square a. Explain the process of dissolving in terms of solute/solvent interactions:
 Observe factors that effect the rate at which a solute dissolves in a specific solvent,
 Express concentrations as molarities,
\Box • Prepare and properly label solutions of specified molar concentration,
 Relate molality to colligative properties.
b. Compare, contrast, and evaluate the nature of acids and bases:
• Arrhenius, Bronsted-Lowry Acid/Bases
 Strong vs. weak acids/bases in terms of percent dissociation Hydronium ion concentration pH Acid-Base neutralization