Chemistry End of Unit Test Review Honors

SPS2e. Apply the Law of Conservation of Matter by balancing the following types of chemical equation – synthesis, decomposition, single replacement, double replacement.

1.
$$C_{10}H_8 + C_{2} \rightarrow H_2O + CO_2$$

2. ___ BaCl₂ + ___ Na₂SO₄
$$\rightarrow$$
 ___ BaSO₄ + ___ NaCl

3.
$$\underline{\hspace{1cm}}$$
 Mg + $\underline{\hspace{1cm}}$ H₂O \longrightarrow $\underline{\hspace{1cm}}$ Mg(OH)₂ + $\underline{\hspace{1cm}}$ H₂

4.
$$P + Cl_2 \rightarrow PCl_3$$

5.
$$_$$
 HgO \rightarrow $_$ Hg + $_$ O₂

SPS3a. Students will differentiate among alpha and beta particles and gamma radiation.

- 6. This type of radiation is generated when an atom gives off a neutron.
 - a. Alpha
 - b. Beta
 - c. Gamma
 - d. Delta
- 7. This type of radiation needs to be blocked by at least two inches of concrete or steal.
 - a. Alpha
 - b. Beta
 - c. Gamma
 - d. Omega
- 8. Which type of radiation might TSA use at airports to see through clothes but not through skin as they check for weapons and contraband?
 - a. Alpha
 - b. Beta
 - c. Gamma
 - d. Psi

SPS3b. Students will differentiate between fission and fusion.

- 9. All stars, including our Sun, use this kind of nuclear energy:
 - a. Fission
 - b. Fusion
 - c. Factual
 - d. Fructis
- 10. This kind of nuclear energy is obtained when one large atom breaks down into 2 or more smaller atoms.
 - a. Fission
 - b. Fusion
 - c. Funion
 - d. Fussy Onion

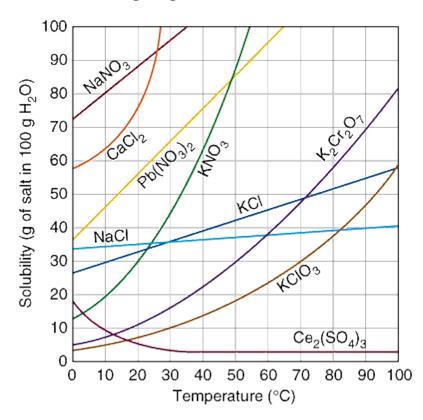
SPS3c. Students will explain the process half-life as related to radioactive decay. 11. If the half-life of palladium-103 is 17 days, how long will it take a 32 g

12. A 208g sample of Sodium-24 decays to 13.0g in 60 hours. What is the half-

13. Potassium-42 has a half-life of 12.4 hours. How much of an 848 g sample of

potassium-42 will be left after 62.0 hours?

sample to decay to 4 g?


life of Sodium-24?

SPS6. Students will investigate the properties of solutions.

- a. Describe solutions in terms of
 - solute/solvent
 - conductivity
 - concentration
- b. Observe factors affecting the rate a solute dissolves in a specific solvent.
- c. Demonstrate that solubility is related to temperature by constructing a solubility curve.
- 14. In a solution of sugar water, what acts as the solvent?
 - a. Water
 - b. Sugar
 - c. Glass
 - d. Air
- 15. In a carbonated beverage such as Coca-Cola, which acts as the solute?
 - a. Water
 - b. Carbon Dioxide
 - c. Aluminum
 - d. Plastic
- 16. Which will hold the most solute?
 - a. 100 mL of water at 5°C
 - b. 100 mL of water at 10°C
 - c. 100 mL of water at 15°
 - d. 100 mL of water at 20°C
- 17. Which will dissolve the fastest?
 - a. Rock candy
 - b. A sugar cube
 - c. Small sugar crystals like in a bag you buy.
 - d. Powdered sugar

- 18. What is known as the "Universal Solvent"?
 - a. Ethyl Alcohol
 - b. Acetone
 - c. Hydrochloric Acid
 - d. Dihydrogen monoxide

Use the following diagram to answer Questions #19 & #20

- 19. At approximately what temperature does the solubility of sodium chloride, NaCl, match the solubility of potassium dichromate, K₂Cr₂O₇?
 - a. 30°C
 - b. 50°C
 - c. 60°C
 - d. 83°C
- 20. Which of the following is least soluble at 50°C?
 - a. KNO₃
 - b. K₂Cr₂O₇
 - c. $Pb(NO_3)_2$
 - d. $Ce_2(SO_4)_3$