Earth Science

Chapter 9 – A View of Earth's Past

Section 1 – Geologic Time

E.Q.: *What is geologic time and the major divisions?* **STANDARDS**:

- SES4. Students will understand how rock relationships and fossils are used to reconstruct the Earth's past.
 - e. Use geologic maps and stratigraphic relationships to interpret major events in Earth history (e.g., mass extinction, major climatic change, tectonic events).
- SES5. Students will investigate the interaction of insolation and Earth systems to produce weather and climate.
 - f. Relate changes in global climate to variation in Earth/Sun relationships and to natural and anthropogenic modification of atmospheric composition.
- SES6. Students will explain how life on Earth responds to and shapes Earth systems.
 - d. Describe how fossils provide a record of shared ancestry, evolution, and extinction that is best explained by the mechanism of natural selection.
 - e. Identify the evolutionary innovations that most profoundly shaped Earth systems: photosynthetic prokaryotes and the atmosphere; multicellular animals and marine environments; land plants and terrestrial environments.

Objectives

- Summarize how scientists worked together to develop the geologic column.
- List the major divisions of geologic time.

The Geologic Column

geologic column - an ordered arrangement of rock layers that is based on the relative ages of the rocks and in which the oldest rocks are at the bottom.

- Evidence of changing conditions on Earth's surface is recorded in the rock layers of Earth's crust.
- The geologic time scale outlines the development of Earth and of life on Earth.
- No single area on Earth contained a record of all geologic time, so scientists combined observations to create a standard geologic column.
- Rock layers in a geologic column are distinguished by the types of rock the layers are made of and by the kinds of fossils the layers contain.
- Fossils in the upper layers resemble modern plants and animals.
- Many of the fossils discovered in old layers are from species that have been extinct for millions of years.
 Reading Check

Where would you find fossils of extinct animals on a geologic column?

You would find fossils of extinct animals in older layers of a geologic column.

Using a Geologic Column

- Scientists use geologic columns to estimate the age of rock layers that cannot be dated radiometrically.
- To determine the layer's age, scientists compare a given rock layer with a similar layer in a geologic column that contains the same fossils or that has the same relative position.
- If the two layers match, they likely formed at about the same time.

Divisions of Geologic Time

- The geologic history of Earth is marked by major changes in Earth's surface, climate, and types of organisms.
- Geologists use these indicators to divide the geologic time scale into smaller units.
- Rocks grouped within each unit contain similar fossils and each unit is generally characterized by fossils of a dominant life-form.

Geologic Time Scale				
Era	Period	Epoch	Beginning of interval in Ma	Characteristics from geologic and fossil evidence
Canczole	Quaternary	Holocane	0.01	The last glacial period ends; complex human societies develop.
		Plaistocene	1.8	Woolly mammoths, thinos, and humans appear.
	Tertiary	Pliocene	5.3	Large camivores (bears, lions, wolves) appear.
		Miocene	23.0	Grazing herds are abundant; raccoons and wolves appear.
		Oligocene	33.9	Deer, pigs, horses, camels, cats, and dogs appear.
		Eocene	55.8	Horses, flying squirrels, bats, and whales appear.
		Paleocene	65.5	Age of mammals begins; first primates appear.
Mesozoic	Cretaceous		146	Flowering plants and modern birds appear; mass extinctions mark the end of the Mesocolc Era
	Jurassic		200	Dinosaurs are the dominant fie-form; primitive birds and flying reptiles appear.
	Triassic		251	Dinosaurs appear; ammonites are common; cycads and confiers are abundant; and mammals appear.
Paleozoic	Permian		299	Pangaea comes together; mass extinctions mark the end of the Paleozoic Era.
	Carboniferous	Pennsylvanian Period	318	Clant cockroaches and dragonfiles are common; coal deposits form; and reptiles appear.
		Mississippian Period	359	Amphibians flourish; brachlopods are common in oceans; and forests and swamps cover most land.
	Devonian		416	Age of fishes begins; amphibians appear; and giant horsetalis, ferrs, and cone-bearing plants develop.
	Silurian		444	Eurypterids, land plants and animals appear
	Ordovician		488	Echinoderms appear; brachlopods increase; trilobites decline; graptolites flourish; atmosphere reaches modern O _g -rich state.
	Cambrian		54.2	Shelled marine invertebrates appear; trilobites and brachlopods are common. First vertebrates apprear.
Precambrian time			4,600	The Earth forms; continental shields appear; fossils are rare; and stromatolites are the most common organism.

Eons and Eras

- The largest unit of geologic unit of time is an eon. Geologic time is divided into four eons: the Hadean eon, the Archean eon, the Proterozoic eon, and the Phanerozoic eon.
- The first three eons are part of a time interval commonly known as Precambrian Time. This 4 billion year interval contains most of Earth's history.

Eons and Eras

era - a unit of geologic time that includes two or more periods

- After Precambrian time the Phanerozoic eon began. This eon is divided into smaller units of geologic time called eras.
- The first era of the Phanerozoic eon was the Paleozoic Era, which lasted 292 million years.
- Paleozoic rocks contain fossils of a wide variety of marine and terrestrial life forms.
- After the Paleozoic Era the Mesozoic Era began and lasted about 183 million years.
- Mesozoic fossils include early forms of birds and reptiles.
- The present era is the Cenozoic Era, which began 65 million years ago. Fossils of mammals are common in Cenozoic rocks.

period - a unit of geologic time that is longer than an epoch but shorter than an era

<u>epoch</u> - a subdivision of geologic time that is longer than an age but shorter than a period.

 Eras are divided into shorter time units called periods. Each period is characterized by specific fossils and is usually named for the location in which the fossils were first discovered.

- Where the rock record is most complete and least deformed, a detailed fossil record may allow scientists to divide period into shorter time units called epochs.
- Epochs may be divided into smaller units of time called ages.
- Ages are defined by the occurrence of distinct fossils in the fossil record.