CHAPTER 9 – CHEMICAL NAMES AND FORMULAS

Jennie L. Borders

PERIODIC TABLE FOR NAMING

lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thullum	ytterbium
57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
138,9055	140.116	140.90765	144.24	[145]	150.36	151.964	157-25	158.9253	162.50	164.930	167.259	168.934	173.04
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	eurium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.038	231.0359	238.0289	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

SECTION 9.1 REGULAR METALS REVIEW

- The <u>regular</u> metals include Group <u>1</u> (except H) and <u>2</u> and <u>aluminum</u>.
- When <u>naming</u> a compound that starts with a regular metal, <u>name</u> the first element and add <u>—ide</u> to the second element (except for polyatomic ions).
- When <u>writing</u> the formula, remember to <u>balance</u> charges.

SAMPLE PROBLEM

• Write the name or formula for the following:

OAlBr₃

Aluminum bromide

OSodium sulfate

 Na_2SO_4

PRACTICE PROBLEMS

• Write the name or formula for the following:

OLiNO₃ Lithium nitrate

OSrCl₂ Strontium chloride

OBarium oxide BaO

OMagnesium phosphate

 $Mg_3(PO_4)_2$

SECTION 9.2 – TRANSITION METALS REVIEW

- The <u>transition</u> metals are in Groups 3 12and the <u>triangle</u>.
- When naming compounds that start with a <u>transition</u> metal, <u>name</u> the first element, add a <u>roman numeral</u> for the charge, and add —ide to the <u>second</u> element (except for polyatomic ions).
- When writing the formula, remember to <u>balance charges</u>.

OLD NAMES FOR TRANSITION METALS

• Remember that for the <u>old</u> naming system for transition metals, the <u>—ic</u> ending means the <u>higher</u> charge and the <u>—ous</u> ending means

the <u>lower</u> chai

Old Name	
ferric	
ferrous	
cupric	
cuprous	
cobaltic	
cobaltous	
stannic	
stannous	
plumbic	
plumbous	
mercuric	
mercurous	
	Old Name ferric ferrous cupric cuprous cobaltic cobaltous stannic stannous plumbic plumbous mercuric mercurous

SAMPLE PROBLEM

• Write the name or formula for the following:

 OFe_2O_3

Iron (III) oxide

OCupric sulfite

 $CuSO_3$

PRACTICE PROBLEM

• Write the name or formula for the following:

OZinc (II) permanganate

$Zn(MnO_4)_2$

OCu₂O (old name)

Cuprous oxide

Section 9.3 - Nonmetals Review

- The <u>nonmetals</u> are located to the right of the <u>stair-step</u> line on the periodic table.
- When naming compounds that start with nonmetals, use <u>prefixes</u> to indicate the <u>number</u> of atoms (except when the first element has <u>1</u> atom) and add <u>—ide</u> to the second element.
- When writing the formula do <u>NOT</u> balance charges, use the <u>prefixes</u> to find the subscripts.

SAMPLE PROBLEM

• Write the name and formula for the following:

 ON_2O

Dinitrogen monoxide

ODiphosphorus pentoxide

 P_2O_5

PRACTICE PROBLEMS

• Write the name and formula for the following.

OCO Carbon monoxide

OCCl₄ Carbon tetrachloride

ONitrogen trihydride NH₃

OPhosphorous trichloride **PCl**₃

SECTION 9.4 – NAMING AND WRITING FORMULAS FOR ACIDS AND BASES

- An <u>acid</u> is a compound that produces <u>H+</u> ions when it dissolves in water.
- The <u>formula</u> for an acid normally starts with and <u>H</u>.
- When <u>naming</u> acids, you should first determine whether or not the acid contains oxygen.

ACIDS THAT DO NOT CONTAIN OXYGEN

- If the acid does <u>not</u> contain oxygen, then you add the prefix <u>hydro-</u> and suffix is <u>—ic</u>. Also add <u>acid</u> at the end.
- Ex: HCl = hydrochloric acid

SAMPLE PROBLEM

• Write the names of the following acids:

OHF Hydrofluoric acid

OHCN Hydrocyanic acid

PRACTICE PROBLEM

• Write the names for the following acids:

OHBr Hydrobromic acid

OHI Hydroiodic acid

ACIDS THAT DO CONTAIN OXYGEN

- When an acid does contain <u>oxygen</u>, you must determine whether its polyatomic ion ends in <u>-ate</u> or <u>-ite</u>.
- OIf the polyatomic ion ends in <u>−ate</u>, then we change the ending to <u>−ic</u>. Ex: HNO₃ = NO₃- = nitrate = nitric acid
- If the polyatomic ion ends in <u>-ite</u>, then we change the ending to <u>-ous</u>. Ex: HNO₂ = NO₂ = nitrite = nitrous acid

SAMPLE PROBLEMS

• Write the names of the following acids:

 OH_2SO_4 Sulfuric acid

OH₃PO₄ Phosphoric acid

 OH_2SO_3 Sulfurous acid

PRACTICE PROBLEMS

• Write the names for the following acids.

OH₂CO₃ Carbonic acid

OH₃PO₃ Phosphorous acid

OHClO₂ Chlorous acid

WRITING THE FORMULAS FOR ACIDS

- When writing the <u>formula</u> for an acid always start with <u>H</u> even if it is not in the <u>name</u>.
- Remember to <u>balance</u> the charges.
- The ending <u>—ic</u> means that the polyatomic ion ends in <u>—ate</u>.
- The ending <u>-ous</u> means that the polyatomic ion ends in <u>-ite</u>.

○H⁺ ●HCOO⁻ ○●HCOOH

SAMPLE PROBLEM

• Write the formula for the following acids.

OHydrosulfuric acid H_2S

OHypochorous acid HClO

 $OAcetic acid HC_2H_3O_2$

PRACTICE PROBLEMS

• Write the formula for the following acids.

OPerchloric acid HClO₄

 $OChromic acid H_2CrO_4$

 $Oxalic acid H_2C_2O_4$

WRITING THE NAMES AND FORMULAS FOR BASES

- A <u>base</u> is a compound that produces <u>OH</u> in water.
- When naming a <u>base</u>, you name it like any other compound that starts with a <u>regular</u> or transition metal. Ex: NaOH = sodium hydroxide
- When writing the <u>formula</u> for a base, remember to <u>balance</u> charges. Ex: magnesium hydroxide = Mg(OH)₂

SECTION 9.4 ASSESSMENT

- 1. How are the formulas for acids determined?
- 2. How are bases named?
- 3. Give the name of HMnO₄.
- 4. Give the names of these bases.
 - a. LiOH
 - b. $Pb(OH)_2$
 - c. $Al(OH)_3$
- 5. Identify each compound as an acid or a base.
 - a. $Ba(OH)_2$
 - b. HClO₄
 - c. KOH

SECTION 9.4 ASSESSMENT

- 6. Write the formula for the following compounds.
 - a. carbonic acidb. sulfurous acid
 - c. iron (III) hydroxide

THE

END