Chapter 6: Population and Community Ecology Reading Guide

Vocabulary

Learn the definition of each term. The *italicized* words are not necessarily in the textbook. The **bold** words require you to know more than just the definition.

Population Exponential growth (J) **Resource partitioning** Community Predation Population ecology Logistic growth (S) Population size Mutualism Population density Overshoot Commensalism Population distribution Die-off **Symbiotic** Sex ratio

K-selected species Keystone species Age structure r-selected species Predator-mediated competition **Density-dependent factors** Survivorship curves Ecosystem engineers Limiting resource Ecological succession Carrying capacity (K) **Metapopulation Primary succession** Density-independent factors Community ecology

Secondary succession Growth rate Competition Pioneer species Intrinsic growth rate (r) Competitive exclusion principle Theory of island biogeography Biotic potential Bottom up control Doubling time Environmental resistance Top down control Climax community

Reading Outline

New England Forests Come Full Circle

- 1. Explain why the forests of New England demonstrated resilience. You should start by defining resilience (from an environmental perspective).
- 2. Describe the series of changes that occurred as the land changed from farm to forest.
- 3. Provide three examples of interdependency in New England forests (ways a specie relies on another)

6.1 Nature exists at several levels of complexity

- 4. Put the following levels of organization in order from least complex (1) to most complex (5)
 - a. ____ Biosphere
 - b. ___ Community
 - c. ___ Ecosystem
 - d. ____ Individual
 - e. ____ Population

<u>6.2 Population ecologists study the factors that regulate population abundance and</u> distribution

- 5. For each statement below, match it with the appropriate term
 - How a population occupies space
 - ____ The number of individuals in each age category
 - ____ The number of individuals per unit area
 - ____ The ratio of males to females
 - ____ The total number of individuals in a population e
- d. Sex ratioe. Age Structure

c. Distribution

a. Size

b. Density

6. Label the following pictures as random, uniform or clumped distribution.

- 7. Label the following as density dependent (DD) or density independent (DI) factors
 - a. ____ A tornado e. ____ Drought
 - b. ____ Amount of food available f. ____ Freezing temperatures
 - c. _____ Availability of water g. _____ Predation
 - d. ____ Climate change h. ____ Spread of disease

6.3 Growth models help ecologists understand population changes

8. Fill in the following chart (careful – mine is organized differently than the book)

Trait	r-selected	K-selected
Level of parental care		
Life Span		
Number of offspring		
Number of		
reproductive events		
Population dynamics		
Population growth rate		
Population regulation		
Size of offspring		
Time to reproductive		
maturity		

9. Fill in the following chart on survivorship curves

Survivorship Curve	Description	Example species
Туре І		
Туре II		
Type III		

6.4 Community ecologists study species interactions

- 10. What is the difference between competitive exclusion and resource partitioning? Which one is likely to be associated with a full niche overlap? A partial niche overlap?
- 11. Give an example of each type of resource partitioning
 - a. Temporal –
 - b. Spatial -
 - c. Morphological -
- 12. Fill in the following chart for species relationships

Relationship	Description	Specific Example	+/+, +/-, +/0
Commensalism			
Competition			
Herbivores			
Keystone Specie			
Mutualism			
Parasites			
Parasitoids			
True predators			

6.5 The composition of a community changes of time

13. What is the main difference between primary and secondary succession?

6.6 The species richness of a community is influenced by many factors

- 14. What happens to the level of biodiversity as
 - a. You move from the poles to the equator?
 - b. A habitat gets older?
 - c. A habitat gets smaller?
 - d. The more separated a habitat is?

WTS – Bringing Back the Black-Footed Ferret

15. Describe the role of prairie dogs in the grassland ecosystem. Why did ranchers not like them?

- 16. Describe the role of the black-footed ferret in the grassland ecosystem? Why did their populations decline?
- 17. What kind of specie is the black-footed ferret (K or r) and how did this impact its recovery?
- 18. List some of the actions taken to help the ferret population recover.

Additional Work:

Answer the MC questions at the end of the chapter.