CHAPTER 6 – CHEMICAL BONDS **SECTION 6.1 – IONIC BONDS** • When the ______ occupied energy level of an atom is filled with ______, the atom is stable and not likely to ______. • The ______ have stable electron configurations with ______. • The ______ of an element depend on the number of ______. . • An _____ is a model of an atom in which each _____ represents a _____. O Some elements achieve _____. ______ through the _____ of electrons between atoms. O An atom that has a net _______ is called an ______. O An ion with a ______ charge is an ______. like the Cl⁻ ion are named by adding the suffix ______ to the element name. (Ex. Cl⁻ = ______) O An ion with a ______ charge is a ______. The name of a ______ is the same as the _______. (Ex. Na⁺ = ______) O The ______ that an ion has are based on the number of _______ that an ion has are based on the number of ________. an element has. • All of the _____ in the same _____ have the same _____. **O** Is it easier for lithium to gain 7 more electrons or lose 1 electron? **O** What charge would lithium have? • Is it easier for beryllium to gain 6 more electrons or lose 2 electrons? • What charge would beryllium have? **O** Is it easier for boron to gain 5 more electrons or lose 3 electrons? **O** What charge would boron have? **O** Is it easier for carbon to gain 4 more electrons or lose 4 electrons? **O** What charge would carbon have? **O** Is it easier for nitrogen to gain 3 more electrons or lose 5 electrons? **O** What charge would nitrogen have? • Is it easier for oxygen to gain 2 more electrons or lose 6 electrons? **O** What charge would oxygen have? **O** Is it easier for fluorine to gain 1 more electron or lose 7 electrons? **O** What charge would fluorine have? • Would neon want to gain or lose electrons? **O** What charge would neon have? • Since ______ in the same ______ have the same number of ______, they all have the same _____. • A ______ is the force that holds ______ together as a unit. O An _________ is the force that holds _________ together. O An __________ forms when electrons are _________ from one atom to another. • When an ______ is formed, electrons are ______ until each atom has a full outer ______.

0	Compounds that contain		_are	, which can be	Э
	represented by		·		
0	A	is a notation tha	t shows what	a compound	
	contains and the	of the atoms or id	ons of these	in the compound.	
0	A	for an ionic comp	oound tells you th	ie ir	1
	the compound.		-		
0	whose particle	es are arranged in a		are called	•
0		tend to have melting points (above 300° C).		points (above 300°C).	
0	Ionic compounds are		in the	state, but they can	
	heat or e	lectricity when they	are	· ·	
0	Ionic compounds are	, so they	W	nen struck by a hammer.	
0	The properties of		can be explained	by the strong	
	among ions within a				-
	among ions within a				

SECTION 6.1 ASSESSMENT

- 1. What is an atom least likely to react?
- 2. Describe one way an element can achieve a stable electron configuration.
- 3. What characteristic of ionic bonds can be used to explain the properties of ionic compounds?
- 4. What will the ratio of ions be in any compound formed from a Group 1 metal and a Group 17 nonmetal?
- 5. Why do ionic compounds include at least one metal?
- 6. Based on their chemical formulas, which of these compounds is not likely to be an ionic compounds: KBr, SO₂, or FeCl₃?

SECTION 6.2 – COVALENT BONDING

0	Ais	s a chemical bond in which two ato	omsa pair of
0	When two atoms share	of electrons, the bond is c	alled a
0	A is a neutr	al that	are joined together by one
	or more	<u> </u>	
0	The betwee	en the shared electrons and the	in each
	nucleus hold the atoms togethe	r in a	
Ο	Many elements exist as		. Diatomic means
	. They are		·
0	When two atoms share	of electrons, the bond is	called a .
	TT 71 (1		11 1

• When two atoms share ______ of electrons, the bond is called a ______.

SECTION 6.2 ASSESSMENT

1. What attractions hold atoms together in a covalent bond?

- 2. Which of these elements does not bond to form molecules: oxygen, chlorine, neon, or sulfur?
- 3. Based on their electron dot diagrams, what is the formula for the covalently bonded compound of nitrogen and hydrogen?

SECTION 6.3 – NAMING COMPOUNDS AND WRITING FORMULAS

0	The name of an		must distinguish the	from other		
	ionic compounds con	taining the same	must distinguish the d describes the			
0	The	of an ionic compoun	d describes the	in the		
	compound.					
0	A	made from only	elements is a	·		
0	When naming an		the name of the	does		
	not change and the na	ame of the	has the s	uffix		
0	Ex. $MgBr_2 =$					
0	Many	form	more than one type of	·		
0	Ex. $MgBr_2 =$ Many form more than one type of When a forms more than one ion, the name of the ion contains a					
_		to indicate th	ne of the ion.			
0	Ex: $Fe^{+2} = $					
	$Fe^{+3} =$.1 . 1			
			that has a positiv	e or negative		
~	and acts a	as a unit is a				
			ollowed by the symbol of the			
0	Use	to snow the	_ of the ions in the			
U	Because all compounds are, the total on the cations and anions must add up to					
0		0 in oi	ionic compound you can	the charges		
U	if they are not the	III al	n ionic compound, you can			
0	The name and formu	la of a	describe th	1e		
Ŭ	The name and formula of a describe the					
0	only contain					
0	The name of the		is the same. The name of t	he		
-	The name of the is the same. The name of the ends in the suffix					
			of each element. A	is not used		
	when the					
	Ex. $CO_2 =$					
	EEIVEC					
	EFIXES	2—	4—	5_		
1 =		3=	4=	5=		
1 = 6 =	= 2=	3= 8 =	4= 9 =	5= 10 =		
6 =	= 2= = 7 =	8 =	9 =	10 =		
6 = 0	= 2= = 7 =	8 = for the element		10 =appear in the		

• Ex: diphosphorus pentoxide = _____

SECTION 6.3 ASSESSMENT

- 1. What does the formula of an ionic compound describe?
- 2. What do the name and formula of a molecular compound describe?
- 3. What suffix is used to indicate an anion?
- 4. Why are Roman numerals used in the names of compounds that contain transition metals?
- 5. What is a polyatomic ion?
- 6. How is it possible for two different ionic compounds to contain the same elements?
- 7. How many potassium ions are needed to bond with a phosphate ion?
- 8. What are the name of these ionic compounds: LiCl, BaO, and Na₃N?
- 9. Name the molecular compounds with these formulas: N_2O_7 and CO.

10. What is the formula for the ionic compound formed from potassium and sulfur?

SECTION 6.4 – THE STRUCTURE OF METALS

- In a _____, valence electrons are _____ to move among the atoms, so the
- O A ______ is the attraction between a ______ and the shared ______ that surround it.
- The _____ in a metal form a _____ that is held in place by strong _____ between the cations and the surrounding _____
- The more ______ an atom can contribute to the shared pool, the ______ the metallic bond will be.
- O The ______ within a metal lattice explains the fact that metals are good ______.
 O An ______ is a mixture of two or more elements that have ______.

SECTION 6.4 ASSESSMENT

- 1. What holds metal ions together in a metal lattice?
- 2. What characteristic of a metallic bond explains some of the properties of metals?
- 3. Explain why the metallic bonds in some metals are stronger than the bonds in other metals.
- 4. Why are metals good conductors of electric current?
- 5. Can two different elements form a metallic bond together?