Chapter 5: Periodic Table Guided Notes

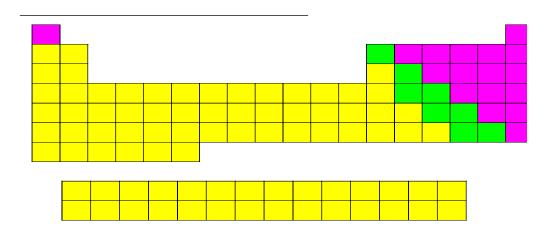
I. History of the Periodic Table

- A. Dmitri Mendeleev (1869, Russian)
 - 1. Organized the elements on the periodic table by increasing
 - 2. Predicted the existence of undiscovered elements.

.

- B. Henry Mosley (1913, British)
 - 1. Organized elements on the periodic table by increasing
 - 2. Fixed problems in Mendeleev's arrangement.

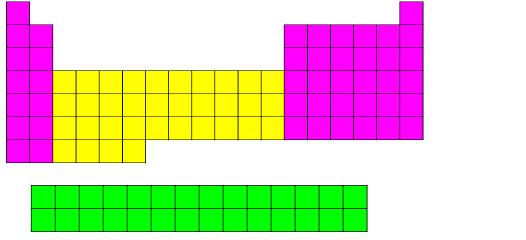
.


- C. Periodic Law
 - 1. Properties of elements repeat in a predictable way when

are used to arrange elements into groups.

Key Concept: How is the modern periodic table organized?

П. Organization


- A. Metallic Character
 - 1. Periodic table consists of: ______, _____,

- 2. The majority of the elements on the periodic table are classified as
- 3. ______ are elements that are good conductors of electric current and heat.
- 4. Except for mercury, metals are at room temperature.
- 5. Most metals are (solid/liquid/gas).
- 6. _____ generally have properties opposite to those of metals.

- 7. ______ are elements that are poor conductors of heat and electric current.
- Nonmetals have ______ points many nonmetals are ______ at room temperature.
- 9. Nonmetals that are solids at room temperature tend to be brittle. If they are hit with a hammer, they shatter, or crumble.
- 10. ______ are located on the periodic table between metals and nonmetals.
- 11. _____are elements with properties that fall between those of metals and nonmetals.
- 12. For example, a metalloid's ability to conduct electric current varies with ______.Silicon (Si) and Germanium (Ge) are good insulators at low temperatures and good conductors at high temperatures.

B. Rows and Columns

1. Each column in the periodic table is called a ______ or _____.

2. The elements in a group have the same number of valence electrons, so members of the same

_____ in the periodic table have similar chemical properties.

- 3. This pattern of repeating properties is the _______.
- 4. Each column in the periodic table of elements is a ______.

Elements in group 1 have ______ valence electron.

Elements in group 2 have ______ valence electrons.

Elements in group 13 have ______ valence electrons.

Elements in group 14 have ______ valence electrons.

Elements in group 15 have ______ valence electrons.

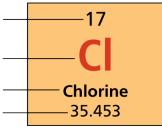
Elements in group 16 have ______ valence electrons.

Elements in group 17 have ______ valence electrons.

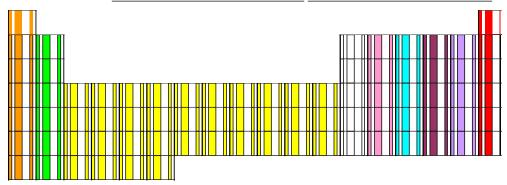
Elements in group 18 have ______ valence electrons.

5. Each row in the periodic table of elements is a _____

Elements in periodhave one energy level.Elements in periodhave two energy levels.Elements in periodhave three energy levels.Elements in periodhave four energy levels.Elements in periodhave five energy levels.


Elements in period _____ have six energy levels.

Elements in period _____ have seven energy levels.


III. Periodic Trends

A. Terms

1. There are four pieces of information for each element. Atomic number, atomic mass, symbol, element name, protons, electrons, neutrons

- Periodic Law states that properties of elements repeat periodically when the elements are arranged by increasing ______
- 3. ______ are the electrons in the outermost energy levels.
- 4. Group # is the number of ______ (except Helium (He)).
 - 5. Period # is the number of ______

B. Dot Diagram

1. Dots represent the _____

Examples:

Sodium

Chlorine

_•