Chapter 4 Atomic Structure

Summary

4.1 Studying Atoms

• The ancient Greek philosopher Democritus believed that all matter consisted of extremely small particles that could not be divided.

Class_

• Aristotle did not think there was a limit to the number of times matter could be divided.

Dalton proposed the theory that all matter is made up of individual particles called atoms, which cannot be divided.

- Dalton developed this theory to explain why the elements in a compound always join in the same way.
- In Dalton's model, the atom looks like a solid sphere.

Thomson's experiments provided the first evidence that atoms are made of even smaller particles.

• In Thomson's model, electrons are scattered evenly in a positive mass of matter.

According to Rutherford's model, all of an atom's positive charge is concentrated in its nucleus.

• The **nucleus** is a dense, positively charged mass located in the center of the atom.

4.2 The Structure of an Atom

Protons, electrons, and neutrons are subatomic particles.

- A **proton** is a positively charged subatomic particle that is found in the nucleus of an atom. It has a charge of 1+.
- An **electron** is a negatively charged subatomic particle that is found in the space outside the nucleus. It has a charge of 1–. The mass of about 2000 electrons would equal the mass of a proton.
- A **neutron** is a neutral subatomic particle that is found in the nucleus of an atom. It has a mass almost equal to that of a proton.

Protons, electrons, and neutrons can be distinguished by mass, charge, and location in an atom.

- Atoms of different elements have different numbers of protons.
 - The **atomic number** of an element equals the number of protons in an atom of that element.
 - The **mass number** of an atom is the sum of the protons and neutrons in the nucleus of that atom.

• Isotopes of an element have the same atomic number but different mass numbers because they have different numbers of neutrons.

- **Isotopes** are atoms of the same element that have different numbers of neutrons and different mass numbers.
- It is hard to notice any differences in the properties of different isotopes of an element.

4.3 Modern Atomic Theory

An electron in an atom can move from one energy level to another when the atom gains or loses energy.

• The possible energies that electrons in an atom can have are called **energy levels.**

Scientists use the electron cloud model to describe the possible locations of electrons around the nucleus.

An electron cloud is a good approximation of how electrons behave in their orbitals.

- An **electron cloud** is a visual model of the most likely locations for electrons in an atom.
- The electron cloud is denser where the chances of finding an electron are high.
- An **orbital** is a region of space around the nucleus where an electron is likely to be found.

The most stable electron configuration is the one in which the electrons are in orbitals with the lowest possible energies.

- A configuration is an arrangement of objects in a given space.
- An **electron configuration** is the arrangement of electrons in the orbitals of an atom.
- When all the electrons in an atom have the lowest possible energies, the atom is said to be in its **ground state**.