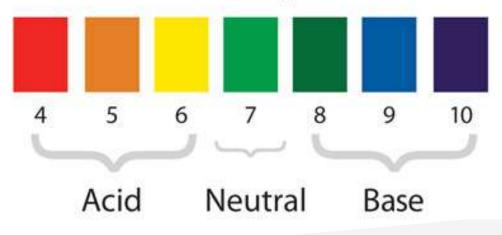

Chapter 19 – Acids, Bases, and Salts

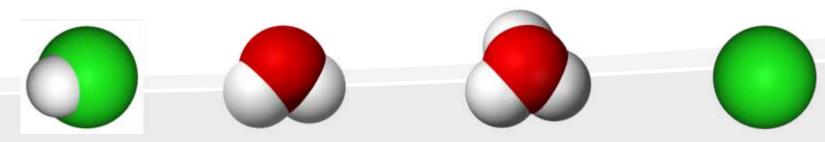
Jennie L. Borders

Section 19.1 – Acid-Base Theories

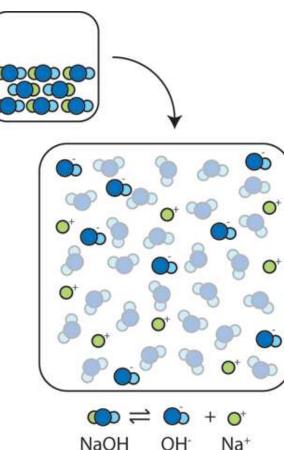
 Acids have a <u>sour</u> taste, change the color of an <u>indicator</u>, can be strong or weak <u>electrolytes</u> in aqueous solution, and react with <u>metals</u>.



 Bases taste <u>bitter</u>, change the color of an acid-base <u>indicator</u>, and can be strong or weak <u>electrolytes</u> in aqueous solution.


Universal Indicator pH Color Chart

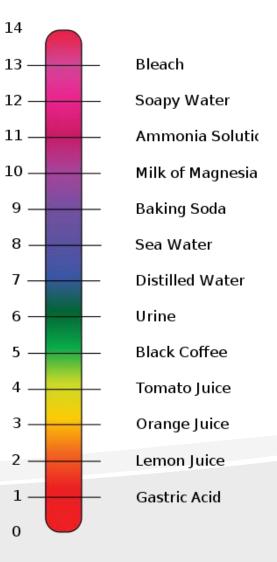
Arrhenius Acids


- <u>Arrhenius</u> acids are compounds that produce $\underline{H^+}$ ions (H₃O⁺) in a solution.
- A <u>monoprotic</u> acid produces <u>1</u> H⁺ ion. Ex: HCl
- A <u>diprotic</u> acid produces <u>2</u> H⁺ ions. Ex. H₂SO₄
- A <u>triprotic</u> acid produces <u>3</u> H⁺ ions. Ex: H₃PO₄

 $HCI(g) + H_2O(I) \longrightarrow H_3O^+(aq) + CI^-(aq)$

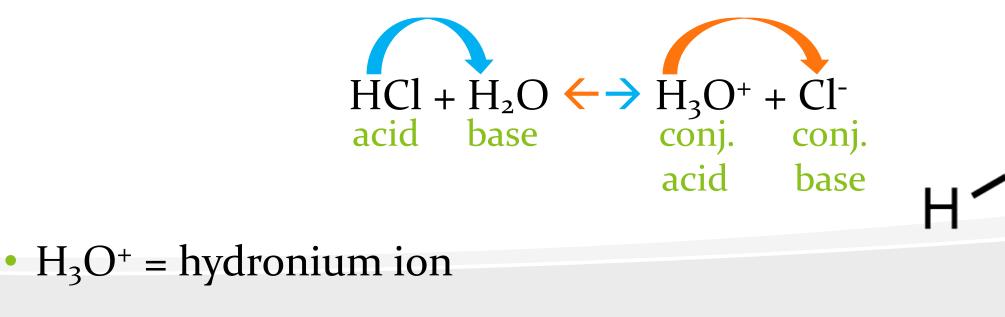
Arrhenius Bases

• <u>Arrhenius</u> bases are compounds that produce <u>OH</u>⁻ ions in solution. Ex: NaOH

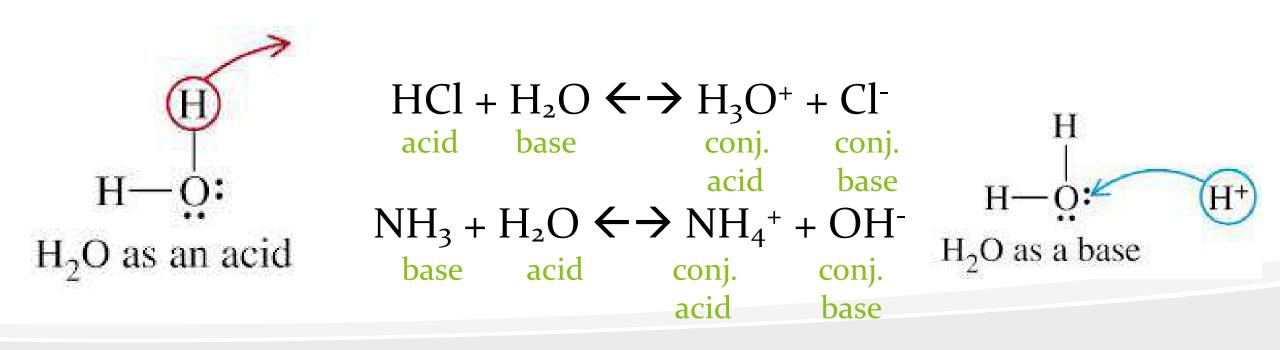

Bronsted-Lowry Acids and Bases

- H⁺ ions are a proton.
- <u>Bronsted-Lowry</u> acids are proton (H⁺) <u>donors</u>.

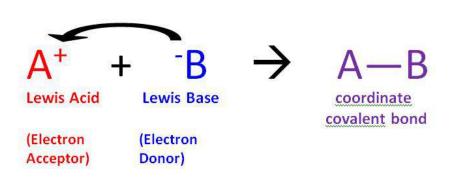
 $HCl + H_2O \rightarrow H_3O^+ + Cl^-$

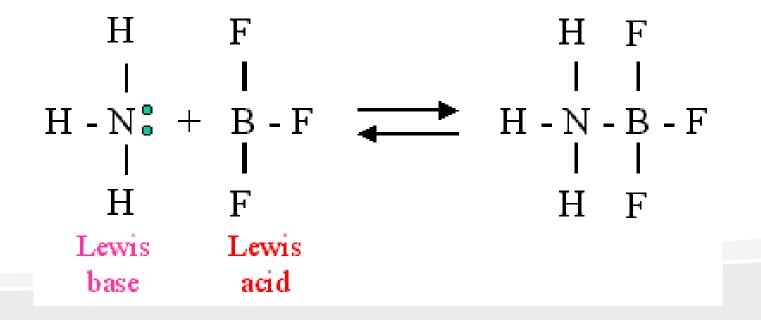

• <u>Bronsted-Lowry</u> bases are proton (H⁺) <u>acceptors</u>.

 $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$


Conjugate Acid-Base Pair

- A <u>conjugate acid</u> is the particle formed when a base <u>gains</u> a hydrogen. (An acid created from a <u>base</u>)
- A <u>conjugate base</u> is the particle formed when a acid <u>loses</u> a hydrogen. (A base created from an <u>acid</u>)

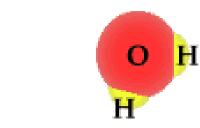

Amphoteric

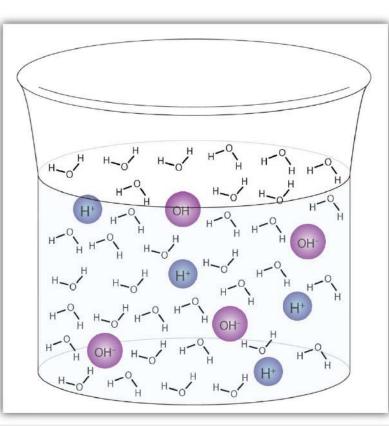

- A substance that is <u>amphoteric</u> can act as an acid or a base.
- $Ex: H_2O$

Lewis Acids and Bases

- <u>Lewis</u> acids are electron pair <u>acceptors</u>.
- <u>Lewis</u> bases are electron pair <u>donors</u>.

Section 19.1 Assessment

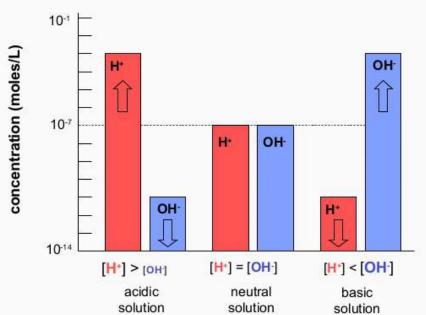

- 1. What are the properties of acids and bases?
- 2. How did Arrhenius define an acid and a base?
- 3. How are acids and bases defined by the Bronsted-Lowry theory?
- 4. What is the Lewis theory of acids and bases?
- 5. Identify the following acids as monoprotic, diprotic, or triprotic.


a. H_2CO_3 b. H_3PO_4 c. HCl d. H_2SO_4

Section 19.2 – Hydrogen Ions and Acidity

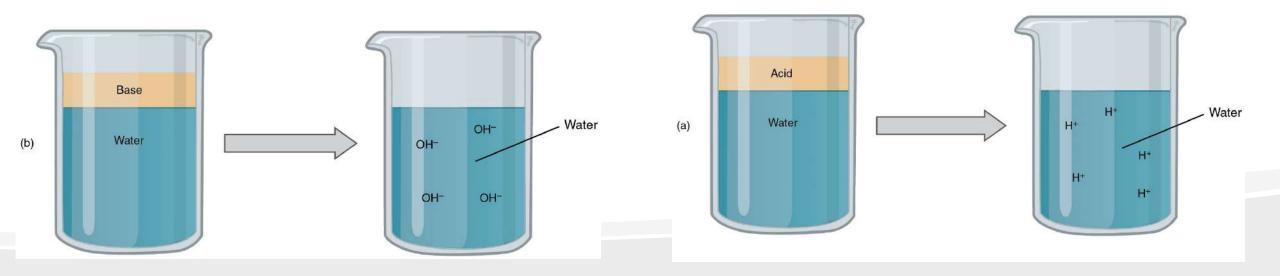
• The reaction in which water molecules produce <u>ions</u> is called the <u>self-ionization</u> of water.

$\mathrm{H_{2}O} \longleftrightarrow \mathrm{H^{+}} + \mathrm{OH^{-}}$



Ion Product Constant for Water

- In an aqueous solution, when [H⁺] <u>increases</u>, the [OH⁻] <u>decreases</u> and vice versa.
- However, the total <u>product</u> of the two concentrations is always 1×10^{-14} . This value is referred to a K_w (ion-product constant for water).


$$[H^+][OH^-] = 1 \times 10^{-14}$$

***<u>K</u> values have <u>no units</u>!!

Acidic, Basic, or Neutral

- In a <u>neutral</u> solution, $[H^+] = [OH^-] = \underline{1 \times 10^{-7}M}$
- In an <u>acidic</u> solution, the [H⁺] is <u>larger</u> than [OH⁻].
- In a <u>basic</u> solution, the [OH⁻] is <u>larger</u> than [H⁺].

Sample Problem

• If the [H⁺] in a coke is 1.0 x 10⁻⁵M, what is the [OH⁻] and is the solution acidic, basic, or neutral?

 $[OH^-] = 1.0 \times 10^{-9}M$ acidic

Practice Problems

1. Calculate the $[OH^-]$ of a solution that has an $[H^+] = 6.0 \times 10^{-10} M$. Is the solution acidic, basic, or neutral?

> [OH⁻] = 1.67 x 10⁻⁵M basic

2. Calculate the $[H^+]$ of a solution that has a $[OH^-] = 3.0 \times 10^{-2} M$. Is the solution acidic, basic, or neutral?

> $[H^+] = 3.33 \times 10^{-13} M$ basic

• The <u>pH</u> of a solution is the negative log of the <u>hydrogen-ion</u> concentration.

$$pH = -log[H^+]$$

***pH has no units!!

- <u>Acidic</u> has a pH < 7
- <u>Neutral</u> has a pH = 7
- <u>Basic</u> has a pH > 7

Sample Problem

• What is the pH of a solution with a hydrogen-ion concentration of 4.2 x 10⁻¹⁰M and is the solution acidic, basic, or neutral?

9.38 Basic

Practice Problems

1. What is the pH of a solution that has an $[H^+] = 0.0015M$ and is the solution acidic, basic, or neutral?

2.82 acidic

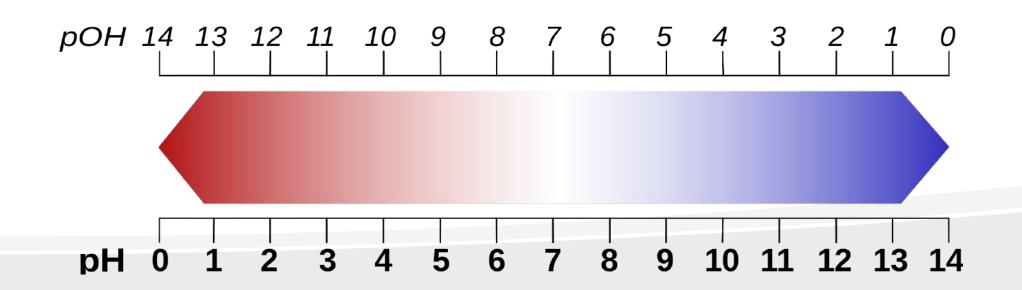
2. What is the pH value of a solution in which $[H^+] = 1.0 \times 10^{-12} M$ and is the solution acidic, basic, or neutral?

• The <u>pOH</u> scale measures the <u>OH</u>⁻ concentration, so it is the <u>opposite</u> of the pH scale.

 $pOH = -log[OH^-]$

A CHEMISTRY LAB IS LIKE A BIG PARTY

SOME DROP ACID OTHERS DROP THE BASE


- <u>Acidic</u> has a pOH > 7
- <u>Neutral</u> has a pOH = 7
- <u>Basic</u> has a pOH < 7

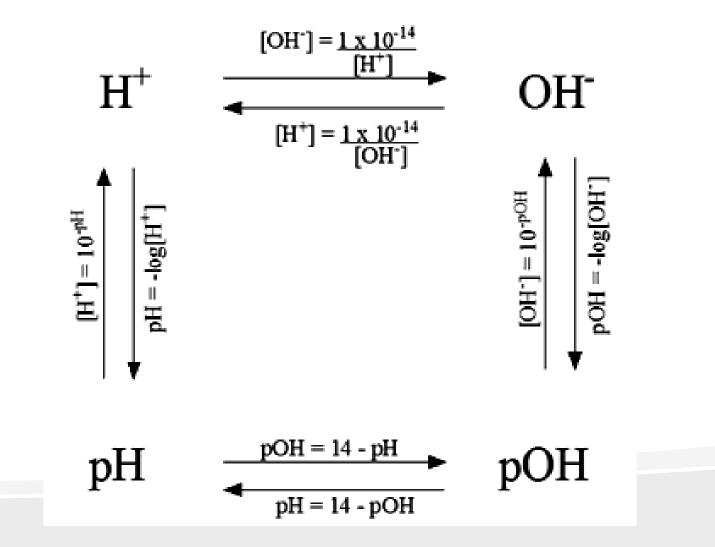
***pOH has no units!!

pH vs. pOH

• The pOH scale is the <u>reverse</u> of the pH scale.



Calculating Concentration


• When going from the pH or pOH to concentration, you must <u>rearrange</u> the log formulas.

$$[H^+] = 10^{-pH}$$

 $[OH^{-}] = 10^{-pOH}$

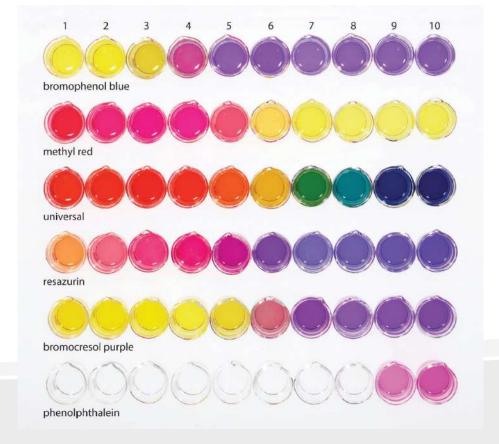
Sample Problem

• The pH of an unknown solution is 6.35. What is the hydrogenion concentration and is the solution acidic, basic, or neutral?

> $[H^+] = 4.5 \times 10^{-7} M$ acidic

Practice Problems

1. Calculate the pH of a solution with a pOH = 12.17 and is the solution acidic, basic, or neutral?


1.83 acidic

2. What is the pH of a solution if $[OH^-] = 4.0 \times 10^{-11}M$ and is the solution acidic, basic, or neutral?

3.60 acidic

Acid-Base Indicators

• An acid-base <u>indicator</u> is a special chemical that changes <u>color</u> as the <u>pH</u> of a solution changes.

Section 19.2 Assessment

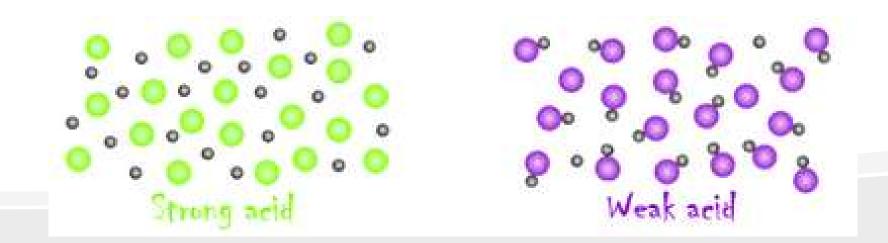
- 1. What is the relationship between [H⁺] and [OH⁻] in an aqueous solution?
- 2. What is true about the relative concentrations of hydrogen ions and hydroxide ions in each kind of solution?

a. basic b. acidic c. neutral

- **3**. Determine the pH of each solution.
 - a. $[H^+] = 1 \times 10^{-6} M$ c. $[H^+] = 0.00010 M$
 - b. $[OH^{-}] = 1 \times 10^{-2} M$ d. $[OH^{-}] = 1 \times 10^{-11} M$

Section 19.2 Assessment

4. What are the hydroxide-ion concentrations for solutions with the following pH values?


a. 6.00

b. 9.00

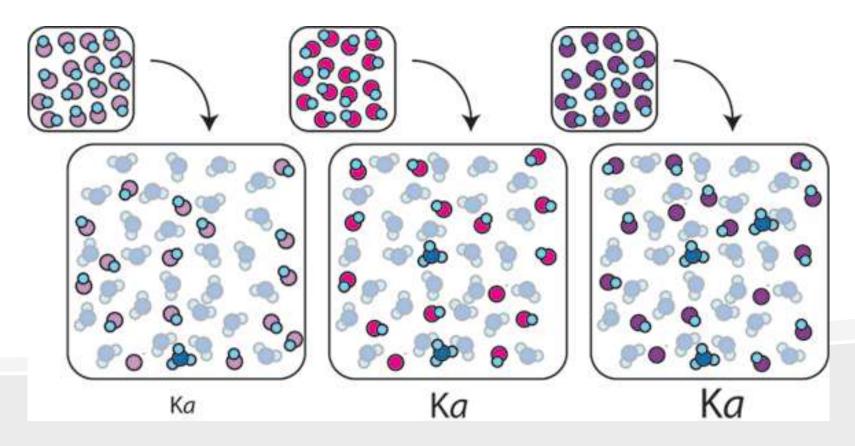
C. 12.00

Section 19.3 – Strengths of Acids and Bases

- In general, <u>strong</u> acids <u>completely</u> dissociate in aqueous solution.
- <u>Weak</u> acids only <u>slightly</u> ionize in aqueous solution.
- Strong acids include <u>HCl, HNO₃, and H₂SO₄</u>.

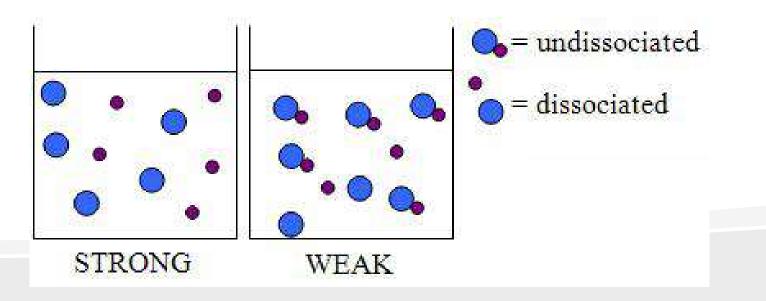
Acid Dissociation Constant (K_a)

The acid dissociation constant (K_a) is the ratio of the concentration of <u>dissolved ions</u> to the concentration of <u>undissolved acid</u>.


 $HNO_2 + H_2O \leftrightarrow H_3O^+ + NO_2^-$

 $K_a = [H_3O^+][NO_2^-]$ $[HNO_2]$

A <u>pure</u> solid or liquid (H₂O) is not included in a <u>K</u> value.



• The <u>K_a</u> value indicates the amount of <u>ionized</u> particles, so a weak acid has a <u>small</u> K_a and a strong acid has a <u>large</u> K_a.

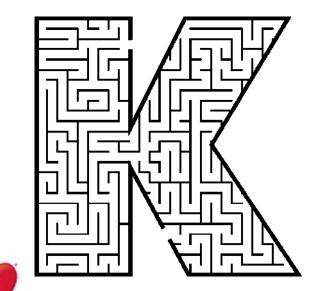
- <u>Strong</u> bases <u>fully</u> ionize or dissociate in an aqueous solution.
- <u>Weak</u> bases <u>partially</u> ionize in an aqueous solution.
- Strong bases include <u>NaOH</u>, KOH, and LiOH.

Base Dissociation Constant (K_b)

The base dissociation constant (<u>K_b</u>) is the ratio of the concentration of <u>dissolved ions</u> to the concentration of <u>undissolved base</u>.

 $NH_3 + H_2O \leftrightarrow NH_4^+ + OH^-$

 $K_b = [NH_4^+][OH^-]$ $[NH_3]$


• The <u>larger</u> the K_b value, the <u>stronger</u> the base.

Generic K Equations

• The generic K_a formula:

 $HA \leftarrow \rightarrow H^{+} + A^{-}$ $K_{a} = [H^{+}][A^{-}]$ [HA] Special

• The generic K_b formula:

 $B + H_2O \leftrightarrow BH^+ + OH^-$

 $K_b = [BH^+][OH^-]$

Sample Problem

• A 0.1000M solution of ethanoic acid is only partially ionized. From measurements of the pH of the solution, [H⁺] is determined to be 1.34 x 10⁻³M. What is the acid dissociation constant (K_a) of ethanoic acid?

It doesn't matter whether or not you know what the formula for ethanoic acid is. $CH_3COOH + H_2O \leftarrow \rightarrow H_3O^+ + CH_3COO^-$ Remember the generic formula $HA \leftarrow \rightarrow H^+ + A^ K_a = [H^+][A^-]$ [HA]

Sample Problem Con't

Next you have to set up an ICE chart.

 $HA \leftrightarrow H^+ + A^-$

	[HA]	[H+]	[A ⁻]
Initial	0.1000M	oM	oM
Change	-1.3 4 x 10 ⁻³ M	+1.34 x 10 ⁻³ M	+1.34 x 10 ⁻³ M
Equilibrium	0.0987M	1.34 x 10 ⁻³ M	1.34 x 10 ⁻³ M

Sample Problem Con't

• You can only use EQUILBRIUM concentrations in a K equation.

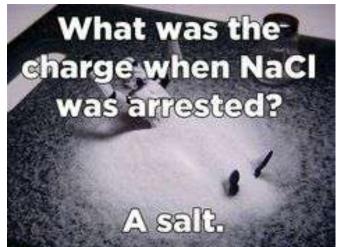
 $K_a = [H^+][A^-]$ [HA]

 $K_{a} = [1.34 \times 10^{-3}M][1.34 \times 10^{-3}M] = 1.82 \times 10^{-5}$ [0.0987M] **K values have no units!!

Practice Problems

1. In a 0.1M solution of methanoic acid, $[H^+] = 4.2 \times 10^{-3} M$. Calculate the K_a of methanoic acid.

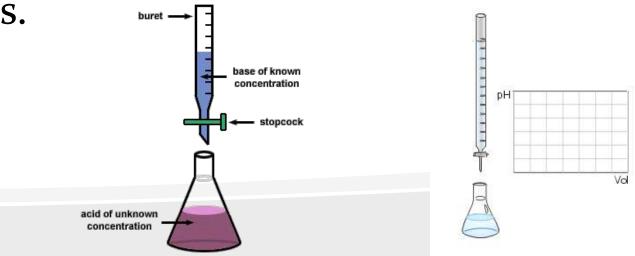
1.8 X 10⁻⁴


2. In a 0.2M solution of a monoprotic weak acid, $[H^+] = 9.86 \times 10^{-4}$ M. What is the K_a for this acid?

Section 19.3 Assessment

3. Compare a strong acid and a weak acid in terms of the acid dissociation constant.

Section 19.4 – Neutralization Reactions


- A <u>neutralization</u> reaction is a reaction between an acid and a base that forms water and a <u>salt</u>.
- Ex: HCl + NaOH \rightarrow H₂O + NaCl H₂SO₄ + 2KOH \rightarrow 2H₂O + K₂SO₄ acid base water salt

 A <u>salt</u> is a compound formed from the cation of a <u>base</u> and the anion of an <u>acid</u>.

Titration

- A <u>titration</u> is the use of a buret to add a measured amount of a <u>known</u> acid (or base) to a measured amount of an <u>unknown</u> base (or acid) until <u>neutralization</u> is achieved.
- The <u>equivalence point</u> of a titration is when the number of moles of <u>hydrogen</u> ions equals the number of moles of <u>hydroxide</u> ions.

Sample Problem

• How many moles of sulfuric acid are required to neutralize 0.50 mol of sodium hydroxide?

 $H_2SO_4 + 2NaOH \rightarrow 2H_2O + Na_2SO_4$

0.50 mol NaOH x <u>1 mol H_2SO_4 </u> = 0.25 mol H_2SO_4 2 mol NaOH

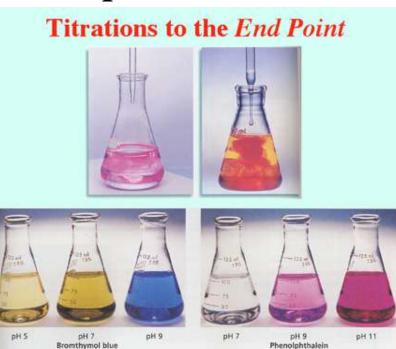
Practice Problems

1. How many moles of potassium hydroxide are needed to completely neutralize 1.56 mol of phosphoric acid?

4.68 mol KOH

2. How many moles of sodium hydroxide are required to neutralize 0.20 mole of nitric acid?

o.20 mol NaOH


Titration

- The <u>end point</u> of a titration is the point at which the indicator changes <u>color</u>.
- In the best titrations, the <u>end point</u> corresponds to the <u>equivalence point</u>.
 <u>Titrations to the End Point</u>

Sample Problem

• A 25mL solution of H_2SO_4 is completely neutralized by 18mL of 1.0M NaOH. What is the concentration of the H_2SO_4 $H_{2}SO_4^{2}NaOH \rightarrow 2H_2O + Na_2SO_4$ M = mol/L so $mol = M \times L$

Mol NaOH = 1.0M x 0.018L = 0.018 mol NaOH 0.018 mol NaOH x $1 \mod H_2SO_4 = 9 x 10^{-3} \mod H_2SO_4$ 2 mol NaOH

M = mol/L so $M = 9 \times 10^{-3} mol/0.025 L = 0.36 M H_2 SO_4$

Practice Problems

1. How many milliliters of 0.45M HCl will neutralize 25.0mL of 1.00M KOH?

56mL HCl

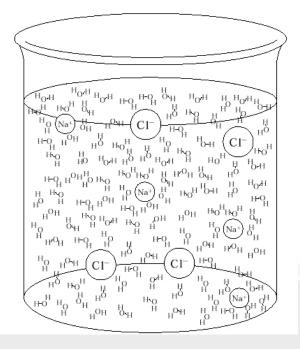
2. What is the molarity of H_3PO_4 if 15.0mL is completely neutralized by 38.5mL of 0.150M NaOH?

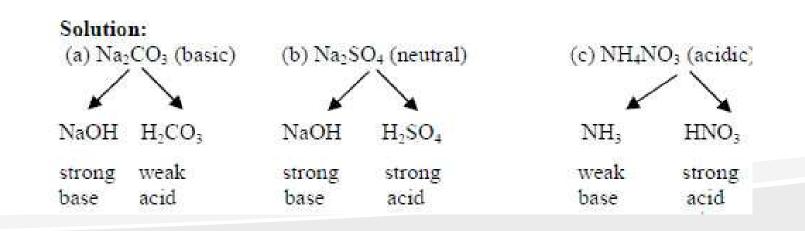
0.129M H₃PO₄

Section 19.4 Assessment

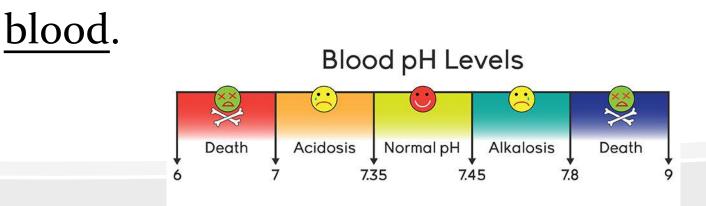
- 1. What are the products of a reaction between an acid and a base?
- 2. How many moles of HCl are required to neutralize aqueous solutions of these bases?
 - a. 2 mol NH_3 b. 0.1 mol $Ca(OH)_2$
- **3**. Write complete balanced equations for the following acid-base reactions.

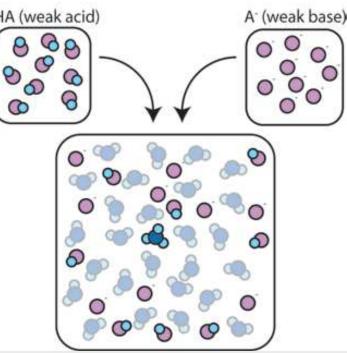
a. $H_2SO_4 + KOH \rightarrow$ b. $H_3PO_4 + Ca(OH)_2 \rightarrow$ c. $HNO_3 + Mg(OH)_2 \rightarrow$

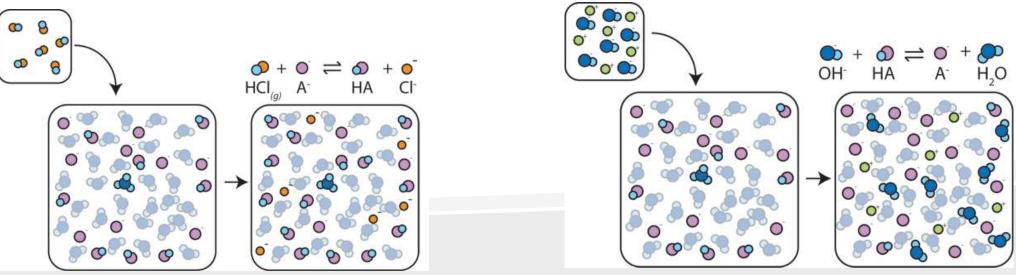

Section 19.5 – Salts in Solutions


- Remember: A <u>salt</u> is a compound formed from the <u>cation</u> of a base and the <u>anion</u> of an acid.
- A salt solution can be <u>acidic</u>, <u>basic</u>, <u>or neutral</u>.

Salt Solutions


- Strong Acid + Strong Base = <u>Neutral Solution</u>
- Strong Acid + Weak Base = <u>Acidic Solution</u>
- Weak Acid + Strong Base = <u>Basic Solution</u>




- A <u>buffer</u> is a solution in which the pH remains relatively <u>constant</u> when small amounts of acid or base are <u>added</u>.
- A buffer is made from a <u>weak acid</u> and its <u>conjugate base</u> or a weak base and its conjugate acid.
- A common <u>buffer</u> that you have is your

Buffer

- Since a buffer contains both an <u>acidic</u> and <u>basic</u> component, it can <u>neutralize</u> acid or base that is added.
- The <u>buffer capacity</u> is the amount of acid or base that can be added to a buffer solution before a <u>significant</u> change in pH occurs.

Section 19.5 Assessment

- 1. What substances are combined to make a buffer?
- 2. Which of these salts would form an acidic aqueous solution?
 - a. KC₂H₃O₂ b. LiCl c. NaHCO₃
 - d. $(NH_4)_2SO_4$

