Chapter 19- Acids, Bases and Salts. GA chemistry standards:

SC7.b: compare contrast and evaluate the nature of acids and bases

SC7.b.1: Arrhenius, Bronsted-Lowery acid/bases

SC7.b.2: strong vs. weak acids/bases in terms of percent dissociation

SC7.b.3: hydronium ion concentration (hydrogen ion)

SC7.b.4: Acid-Base neutralization

19.1 Acid-Base Theories

- Properties of Acids
 - Sour taste
 - React with metals to produce hydrogen gas
 - o Aqueous solutions conduct electricity and are call electrolytes
 - Will change the color of acid base indicator
 - Low pH (below 7)
- Properties of Bases
 - o Bitter taste
 - Feel slippery
 - o Aqueous solutions conduct electricity and are call electrolytes
 - Will change the color of acid base indicator
 - High pH (above 7)
- Arrhenius Acids are defined as hydrogen-containing compounds that ionize to yield hydrogen ions (H⁺¹) in aqueous solutions
 - o Monoprotic acid are acids that contain ONE ionizable hydrogen. Examples: HCl or HNO₃
 - o Diprotic acid are acids that contain TWO ionizable hydrogen. Examples: H₂S or H₂SO₄
 - o Triprotic acids are acids that contain THREE ionizable hydrogen. Examples: H₃PO₄
- Arrhenius bases are defined as compounds that ionize to yield hydroxide ions (OH¹-) in aqueous solutions
- Bronsted-Lowery defines an acid as a Hydrogen-Ion donor
- Bronsted-Lowery defines a base as a hydrogen-ion acceptor
 - o Conjugate acid is the particle formed when a base gains a hydrogen ion
 - o Conjugate base is the particle formed when an acid looses a hydrogen ion
 - Conjugate acid-base pair consist of two substances that are related by the loss or gain of a single hydrogen ion

$$\mathrm{NH_3}(aq) + \mathrm{H_2O}(\mathit{I}) \Longrightarrow \mathrm{NH_4^+}(aq) + \mathrm{OH^-}(\mathit{aq})$$
 Base Acid Conjugate acid Conjugate base

- O Conjugate acid-base pairs: NH₃ & NH₄⁺¹, H₂O & OH⁻¹
- If the compounds differ by more that one hydrogen ion (or any other element) they CAN NOT be classified as conjugate acid-base pairs.
- Lewis acid is a substance that can accept a pair of electrons to form a covalent bond
- Lewis base is a substance that can donate a pair of electrons to form a covalent bond

Туре	Acid	Base
Arrhenius	H ⁺ producer (donor)	OH ⁻¹ producer
Bronsted-Lowery	H ⁺ producer (donor)	H ⁺ acceptor
Lewis	Electron-pair acceptor	Electon-pair donor

19.2 Hydrogen Ions and Acidity

• Self-ionization is where water molecules production ions

$$H_2O(l) \rightleftharpoons H^+(aq) + OH^-(aq)$$

- Hydrogen ion Hydroxide ion
- Neutral solution is where the [H⁺¹] and [OH⁻¹] are equal ([]=concentration of)

- For aqueous solutions, the product of the hydrogen-ion concentration and the hydroxide-ion concentrations equals 1.0 X 10⁻¹⁴.
- Ion-product constant for water (K_w) is the product of the concentrations of the hydrogen ions and hydroxide ions in water.
 - \circ $K_w = [OH^{-1}][H^{+1}] = 10^{-14}$
- Acidic solution is one in which [H⁺¹] is greater than [OH⁻¹], the [H⁺¹] is greater than 1.0 X 10⁻⁷.
- Basic solution is one in which [H⁺¹] is less than [OH⁻¹], the [H⁺¹] is less than 1.0 X 10⁻⁷.
- pH of a solution is the negative logarithm of the hydrogen-ion concentration
- $\bullet \quad pH = -\log[H+1]$
- A solution in which [H⁺¹] is greater than 1.0 X 10⁻⁷M has a pH less than 7.0 and is acidic
- A solution in which [OH⁻¹] is less than 1.0 X 10⁻⁷M has a pH greater than 7.0 and is basic
- Recall that M stands for molarity and is moles/liter and is used to represent concentration
- pOH of a solution is the negative logarithm of the hydroxide-ion concentration
- $\bullet \quad pH = -\log[OH^{-1}]$

	[H+] (mol/L)	[OH ⁻] (mol/L)	pH Aqueous system
	1 × 10°	1 × 10 ⁻¹⁴	0.0 ← 1M HCI
increasing acidity	1×10^{-1}	1×10^{-13}	1.0 → 0.1 <i>M</i> HCI
	1 × 10 ⁻²	1×10^{-12}	2.0 Gastric juice
	1×10^{-3}	1×10^{-11}	3.0 Lemon juice
	1×10^{-4}	1 × 10 ⁻¹⁰	4.0 - Tomato juice
ncre	1 × 10 ⁻⁵	1×10^{-9}	5.0 ← Black coffee
	1×10^{-6}	1 × 10 ⁻⁸	6.0 Milk
Neutral	1×10^{-7}	1×10^{-7}	7.0 - Pure water
<u>≥</u>	1×10^{-8}	1×10^{-6}	8.0 Blood
asic	1×10^{-9}	1×10^{-5}	9.0 Sodium bicarbonate sea water
ng p	1×10^{-10}	1 × 10 ⁻⁴	10.0
Increasing basicity	1×10^{-11}	1 × 10 ⁻³	11.0 Milk of magnesia Household ammonia
2	1×10^{-12}	1 × 10 ⁻²	12.0 Washing soda
*	1×10^{-13}	1×10^{-1}	13.0 ← 0.1 <i>M</i> NaOH
	1×10^{-14}	1 × 10°	14.0 - 1M NaOH

- An indicator is a valuable tool for measuring pH because its acid form and base form have different colors in solution
- Example of universal indicator colors

Using pH or pOH to calculate concentration

- If pH or pOH is known they can be used to calculate the concentration of hydrogen ions or hydroxide ions in solution.
 - [H⁺¹]=10^{-pH}

- \circ [OH⁻¹]= 10^{-pOH}
- o pH + pOH = 14
- \circ [OH⁻¹] [H⁺¹]=10⁻¹⁴
- Example find the pH, pOH and the [OH-1] if the [H+1] = 1.23 x 10-2
 - \circ [H⁺¹]= 1.23 x 10⁻²
 - \circ pH = -log (1.23 x 10⁻²) = 1.91
 - \circ pOH = 14 1.91 = 12.09
 - O [OH-1]= 10 (-12.09) =8.13 x 10-13

Acid	Neutral	Base
pH less than 7	pH = 7	pH greater than 7
$[H^{+1}]$ is greater than 1.0 X $10^{-7}M$	[H ⁺¹] is equal to 1.0 X 10 ⁻⁷ M	$[H^{+1}]$ is less than 1.0 X $10^{-7}M$

19.3 Strengths of Acids and Bases

- Strong acids are complete ionized in aqueous solutions
 - Example: $HCl \rightarrow H^{+1} + C^{-1}$ forms 100% of the expected ions
 - o For strong acid the molarity equals the concentration of hydrogen ions
- Weak acids ionizes only slightly in aqueous solutions
 - Example: $HC_2H_3O_2 \rightarrow H^{+1} + C_2H_3O_2$ -1 forms 10-15% of the expected ions
- Strong bases are complete ionized in aqueous solutions
 - Example: NaOH \rightarrow Na⁺¹ + OH⁻¹ forms 100% of the expected ions
 - o For strong bases the molarity equals the concentration of hydroxide ions
- Weak bases ionizes only slightly in aqueous solutions
 - Example: $NH_3 + H_2O \rightarrow NH_4^{+1} + OH^{-1}$ forms 10-15% of the expected ions

19.4 Neutralization reactions

- Neutralization reaction is a reaction in which an acid and a base react in an agueous solution to produce a salt and water.
- In general the reaction of an acid with a base produces water and one of a class of compounds called salts.
- Equivalence point is when the number of moles of hydrogen ions equals the number of moles of hydroxide ions
- Titration is the process of adding a known amount of solution of known concentration to determine the concentration of another solution.
- Standard solution is the solution of known concentration
- Titration continues until the indicator shows that neutralization had just occurred.
- End point is the point at which the indicator changes color
- The point of neutralization is the end point of the titration.

Titration calculations

- 1. Start by writing a BALANCED chemical reaction if one is not given
- 2. Find the number of moles of standard solution used (Molarity x Liters = moles)
- 3. Use stoichiometry to see how many moles of the other reactant were neutralized
- 4. Use the known volume of second reactant to calculate the concentration (Molarity = moles/liters). Or use the concentration to calculate the volume needed.

Example1: How much of 0.5M HNO₃ in mL is necessary to titrate 25.0 mL of a 0.05 M Ca(OH)₂?

- 1. Balanced equation: $2 \text{ HNO}_3 + \text{Ca}(\text{OH})_2 \rightarrow 2 \text{ H}_2\text{O} + \text{Ca}(\text{NO}_3)_2$
- 2. Moles of standard solution used:
- a. $25.0 \ mL \ \frac{1 \ L}{1000 \ mL} = 0.0250 \ L$ b. $0.05 \ M \ Ca(OH)_2 = 0.05 \frac{mol}{L} \ Ca(OH)_2$ c. $0.05 \frac{mol}{L} \ Ca(OH)_2 \times 0.0250 \ L = 0.00125 \ mol \ Ca(OH)_2$ 3. Stoichiometry: $0.00125 \ mol \ Ca(OH)_2 \ \frac{2 \ mol \ HNO_3}{1 \ mol \ Ca(OH)_2} = 0.0025 \ mol \ HNO_3$ 4. Volume: $\frac{0.0025 \ mol}{0.5 \ \frac{mol}{L}} \ HNO_3 = 0.005 \ LHNO_3 \frac{1000 \ mL}{1 \ L} = 5.0 \ mL \ HNO_3$

Example2: What is the concentration of 22.0 mL HNO₃ that is titrated 25.0 mL of a 0.15 M Ca(OH)₂?

- 1. Balanced equation: $2 \text{ HNO}_3 + \text{Ca}(\text{OH})_2 \rightarrow 2 \text{ H}_2\text{O} + \text{Ca}(\text{NO}_3)_2$
- 2. Moles of standard solution used:

a.
$$25.0 \text{ mL} \frac{1 \text{ L}}{1000 \text{ mL}} = 0.0250 \text{ L}$$
 b. $0.15 \text{ M Ca(OH)}_2 = 0.15 \frac{\text{mol}}{\text{L}} \text{ Ca(OH)}_2$
c. $0.15 \frac{\text{mol}}{\text{L}} \text{ Ca(OH)}_2 \times 0.0250 \text{ L} = 0.00375 \text{ mol Ca(OH)}_2$

c.
$$0.15 \frac{mol}{L} Ca(OH)_2 \times 0.0250 L = 0.00375 mol Ca(OH)_2$$

- 3. Stoichiometry: $0.00375 \ mol \ Ca(OH)_2 \ \frac{2 \ mol \ HNO_3}{1 \ mol \ Ca(OH)_2} = 0.0075 \ mol \ HNO_3$
- 4. concentration: $22.0 \ mL \frac{1 \ L}{1000 \ mL} = 0.0220 \ L$ $\frac{0.0075 \ mol}{0.0220 \ L} HNO_3 = 0.341 \ MHNO_3$

19.5 Salts in solution

- Salt hydrolysis is where the cations or anions of a dissociated salt remove hydrogen ions from (or donate hydrogen ions to) the water.
- In general, salts that produce acidic solution contain positive ions that release protons to water. Salts that produce basic solutions contain negative ions that attract protons from water.
- Buffer is a solution in which the pH remains relatively constant when small amounts of acid or bases are added.
- A buffer is a solution of weak acid and one of its salts, or a solution of a weak base and one of its salts.
- A buffer solute is better able to resist drastic changes in pH than is pure water
- Buffer capacity is the amount of acid or base that can be added to a buffer solution before a significant change in pH occurs.
- Two buffer systems are crucial in maintain human blood pH.

EQUATION THAT YOU MUST KNOW THE DAY OF THE TEST

pH= -log [H ⁺¹] pOH= -log [OH ⁻¹]	$Molarity = \frac{mol}{L}$
[H ⁺¹]=10 ^{-pH} [OH ⁻¹]= 10 ^{-pOH}	$1000 \ mL = 1 \ L$
pH + pOH = 14	
[OH ⁻¹] [H ⁺¹]=10 ⁻¹⁴	