#### CHAPTER 18 NOTES

#### Properties of Atoms and the Periodic Table

#### CHEMICAL SYMBOLS

- <u>Chemical symbol</u> short abbreviated way to write the name of an element
- <u>Element</u> made up of only one kind of atom – cannot be broken down
- How to write symbols 1 capital letter or a capital and small letter

# PARTS OF AN ATOM



- <u>Nucleus</u> positively charged center; contains most of the mass of the atom
- <u>Electron</u> particles that move around the nucleus forming a cloud of negative charge
- <u>Proton</u> particle that gives the nucleus its positive charge
- <u>Neutron</u> particle with no charge; also in the nucleus

# PARTS OF AN ATOM (continued)

- net charge on nucleus is positive
- Amount of positive charge is = to the amount of negative charge
- <u>Quarks</u> smaller particles that make up protons and neutrons

# COUNTING ATOMS

- All atoms of an element have same # of protons
- The # of protons in nucleus determines what the element is
- <u>Atomic #</u> # of protons in an atom
- Atoms are neutral the cloud of negative actually balances positive charge
- # of electrons = # of protons

# MODELS OF ATOMS

- John Dalton atoms were solid spheres
- <u>J. J. Thomson</u> an atom contained small, negatively charged particles
- <u>Rutherford</u> proposed that almost all the mass of an atom and all of its positive charges were concentrated in a central atomic nucleus surrounded by electrons

#### MODELS (continued)

 <u>Niels Bohr</u> – atoms had a dense center; electrons traveled in fixed orbits around the atom's nucleus

 Present day – electrons do not follow fixed orbits but tend to occur more frequently in certain areas around the nucleus

# ELECTRON CLOUD

- Area around the nucleus of an atom where its electrons are most likely found
- Farther an electron is from the nucleus, the more energy
- Electrons with lower amount of energy are in the first level
- 1<sup>st</sup> 2 electrons2<sup>nd</sup> 8 electrons

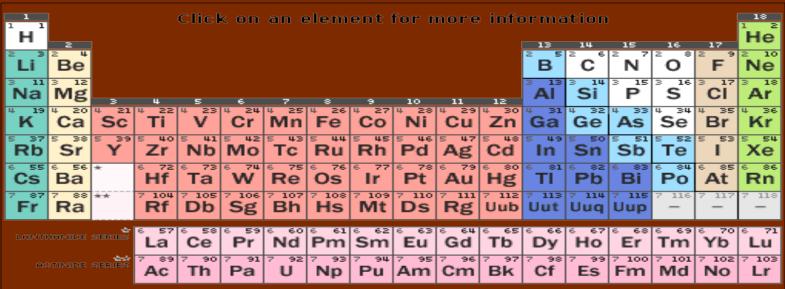
3<sup>rd</sup> – 18 electrons4<sup>th</sup> – 32 electrons

#### ATOMIC MASS

- Protons tell what the element is
- Atomic # # of protons in an atom
- Mass of an atom depends on # of protons & neutrons
- Mass # the sum of the protons & the # of neutrons
- If you know the mass # & atomic # can find the # of neutrons
- # of neutrons = mass # atomic #

# ISOTOPES

- atoms of the same element with different #s of neutrons
- example hydrogen has 3 isotopes 0, 1, or 2
- 2 ways to show difference between isotopes:
- name of element followed by mass #
  write the symbol with the mass # and atomic #


#### PERIODIC TABLE

- Mendeleev classified elements by arranging the elements in order of increasing atomic mass
- Periodic table table of elements arranged by increasing atomic number & by changes in physical and chemical properties

# PERIODIC TABLE

- Elements are arranged in vertical rows called groups or families
- Groups labeled 1-18; each group contains elements with similar properties

# example: Group 11 Cu, Ag, Au all metals, shiny, and conductors



# PERIODIC TABLE (cont)

- <u>Halogen family</u> Group 17 each element has 7 electrons on outer energy level (valence electrons); form compounds with elements in group 1
- Noble gas family Group 18 all but one element has 8 valence electrons; occur in nature; no compounds are found in nature
- Horizontal rows of periodic table are called periods

# PERIODIC TABLE (cont)

- Period 2 begins with Li and ends with Ne
- Each element across is in a different group

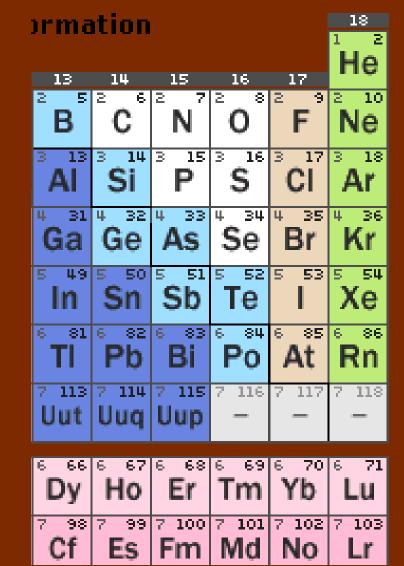
| 1<br>1 1<br>H                    | • Each aroun has diffarent nronerties |                          |                    |                   |                    |                       |                       |                        |             |                 |                       |                                  |                       |                   |                       | 18<br>1 2<br>He       |                       |
|----------------------------------|---------------------------------------|--------------------------|--------------------|-------------------|--------------------|-----------------------|-----------------------|------------------------|-------------|-----------------|-----------------------|----------------------------------|-----------------------|-------------------|-----------------------|-----------------------|-----------------------|
| <sup>2</sup> J                   | ² u<br>Be                             |                          |                    |                   |                    |                       |                       |                        |             |                 |                       | <sup>2</sup> B                   | ິເ                    | 2 7<br>N          | °0°                   | 2 9<br>F              | <sup>2</sup> 10<br>Ne |
| <sup>₃</sup> <sup>11</sup><br>Na | ³ 12<br>Mg                            | 3                        | ų                  | 5                 | 6                  | 7                     | 8                     | 9                      | 10          | 11              | 12                    | B 13<br>Al                       | <sup>₃</sup> 14<br>Si | з 15<br>Р         | ∃ 16<br><b>S</b>      | <sup>∋</sup> 17<br>CI | <sup>∋ 18</sup><br>Ar |
| <sup>4</sup> <sup>19</sup>       | <sup>∓</sup> Ca                       | SC                       | 4 22<br><b>Ti</b>  | 4 23<br>V         | <sup>4</sup> Cr    | <sup>u</sup> ₂s<br>Mn | <sup>4 26</sup>       | <sup>₽</sup> Co        | 4 28<br>Ni  | <sup>4</sup> Cu | <sup>4 зо</sup><br>Zn | <sup>#</sup> <sup>₿1</sup><br>Ga | Ge                    | 4 33<br><b>As</b> | <sup>∓</sup> 34<br>Se | ч з5<br><b>Br</b>     | <sup>4 36</sup><br>Кг |
| 5 37<br>Rb                       | ₅ ₃≋<br>Sr                            | 5 39<br>Y                | s 40<br>Zr         | s 41<br>Nb        | 5 4≥<br>Mo         | TC                    | ₅ <sub>44</sub><br>Ru | s 45<br>Rh             | Pd          | Ag              | Cd                    | In                               | ⁵ ₅₀<br>Sn            | s si<br>Sb        | ₅ sz<br>Te            | 1                     | Xe                    |
| ° ss<br>Cs                       | ₅ ₅₀<br>Ba                            | ×                        | 6 72<br>Hf         | е 73<br><b>Та</b> | е 74<br>W          | ° 75<br>Re            | 6 76<br>Os            | е 77<br>Ir             | e 78<br>Pt  | 6 79<br>Au      | °∎®                   | е 81<br>ТІ                       | ° 82<br>Pb            | ° ≋<br>Bi         | • ••<br>Po            | • ••<br>At            | <sup>6 86</sup><br>Rn |
| 7 87<br>Fr                       | <sup>7</sup> 88<br>Ra                 | **                       | 7 104<br><b>Rf</b> | 7 105<br>Db       | 7 106<br><b>Sg</b> | 7 107<br>Bh           | 7 108<br><b>HS</b>    | <sup>7</sup> 109<br>Mt | 7 110<br>DS | Rg              | 7 112<br>Uub          | 7 113<br>Uut                     | 7 114<br>Uuq          | 7 115<br>Uup      | 7 116                 | 7 117                 | 7 118                 |
| LANTI                            | HANIDE                                | SERIES                   | 6 57<br>La         | ₀ ₅₀<br>Ce        | 6 59<br>Pr         | 6 60<br>Nd            | 6 61<br>Pm            |                        |             | ₅<br>Gd         | 6 65<br>Tb            | 6 66<br>Dy                       | 6 67<br><b>HO</b>     | 6 68<br>Er        | 6 69<br>Tm            | 6 70<br>Yb            | 6 71<br>Lu            |
| A                                | TINIDE                                | <del>رين</del><br>SERIES | 7 89<br>AC         | 7 90<br>Th        | 7 91<br>Pa         | 7 92<br>U             | 7 93<br>Np            | 7 94<br>Pu             | 7 95<br>Am  | 7 96<br>Cm      | 7 97<br><b>Bk</b>     | 7 98<br>Cf                       | 7 99<br>ES            | 7 100<br>Fm       | 7 101<br>Md           | 7 102<br><b>NO</b>    | 7 103<br>Lr           |

# PERIODIC TABLE (still)

 <u>Metals</u> – located on the left side; most atoms have 3 or fewer valen electrons; they are shiny, conduct electricity & heat, tend to lose electrons when they react



LANTHANIDE :


# ALKALINE EARTH METALS



Group 2
 Have 2
 valence
 electrons

# NONMETALS

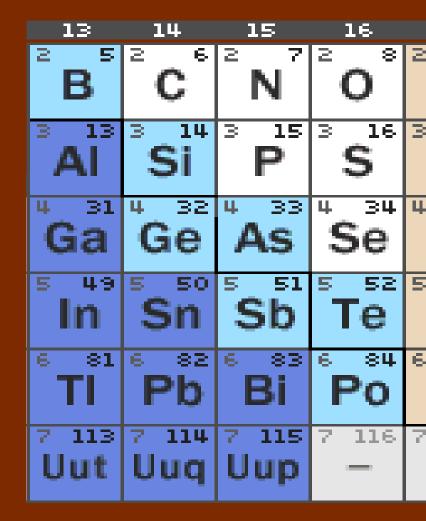
- On the right side of table
- Usually 5 or more valence electrons <u>except</u> C, H, He.
- Poor conductors of heat & electricity
- Most are gases at room temp, some are brittle solids
- tend to gain electrons when reacting with



## ALKALI METALS

• Group 1

 Usually shiny, reflect light, malleable, ductile, good conductors of heat & electricity, soft, relatively low melting point




LONTH

RC'

# METALLOIDS

- Elements along a stair line
- Have properties of metals and nonmetals
- Boron, Silicon, Germanium, Arsenic, Antimony, Tellurium, Polonium,

