Chapter 17: Mechanical Waves and Sound

Jennie L. Borders

Warm-Up Nov. 4

1. What is a wave?

2. What is the highest point on a wave called?

3. What is reflection?

Section 17.1 – Mechanical Waves

- A <u>mechanical wave</u> is a disturbance in matter that carries <u>energy</u> from one place to another.
- Mechanical waves require <u>matter</u> to travel through.
- The <u>material</u> through which a wave travels is called a <u>medium</u>.
- A mechanical wave is created when a source of <u>energy</u> causes a <u>vibration</u> to travel through a

medium.

Types of Mechanical Waves

The three main types of mechanical waves are transverse waves, longitudinal waves, and surface waves.

• A <u>point</u> on the wave vibrates up and down between a <u>maximum</u> and <u>minimum</u> height.

Transverse Waves

A <u>transverse wave</u> is a wave that causes the medium to vibrate at <u>right angles</u> to the <u>direction</u> in which the wave travels.

Transverse Waves

The <u>highest</u> point of the wave above the rest position is the <u>crest</u>.

The <u>lowest</u> point below the rest position is the <u>trough</u>.

Longitudinal Waves

A <u>longitudinal wave</u> is a wave in which the vibration of the medium is <u>parallel</u> to the direction the wave travels.

An area where the particles in a medium are spaced <u>close together</u> is called a <u>compression</u>.
An area where the particles in a medium are <u>spread out</u> is called a <u>rarefaction</u>.

Surface Waves

• A <u>surface wave</u> is a wave that travels along a surface separating <u>two media</u>.

The motion of the particles is in a <u>circle</u>.

Section 17.1 Assessment

List the three main types of mechanical waves.For each type of wave, compare the vibration of the medium to the direction of the wave.

Warm-Up Nov. 6

- 1. What are the 3 types of waves?
- 2. How is a wave made?
- 3. What is the lowest point of the wave called?

Section 17.2 – Properties of Mechanical Waves

Any motion that repeats at regular time intervals is called periodic motion.

The time required for <u>one cycle</u>, a complete motion that returns to its starting point, is called the <u>period</u>.

Frequency

Any periodic motion has a <u>frequency</u>, which is the number of <u>complete cycles</u> in a given time.

Frequency is measured in cycles per second, or <u>hertz (Hz)</u>.

A wave's frequency equals the frequency of the <u>vibrating source</u> producing the waves.

Wavelength

Wavelength is the distance between a point on one wave and the <u>same</u> point on the next cycle of the wave.

Increasing the frequency of a wave <u>decreases</u> the wavelength.

Wave Speed

Formula for the speed of waves

Speed = m/s Wavelength = m Frequency = 1/s or Hz

Sample Problem

 $\lambda = 0.25 \text{mv} = 0.25 \text{m x} 3.0(1/\text{s})$ $\upsilon = 3.0 \text{Hzv} = 0.75 \text{m/s}$

Practice Problems

A wave on a rope has a wavelength of 2.0m and of 2.0P . W t is rency of wave 2.0m x 0(1)e wate has a requincy of 4Hz and n t A wave a wavelength of 0.1nl. What is the speed of the wave?

 $v = \lambda x v$ v = 0.1m x 4(1/s) = 0.4m/s

Practice Problems

Speed

If you assume that waves are traveling at a <u>constant speed</u>, then wavelength is <u>inversely</u> <u>proportional</u> to frequency.

- If wavelength <u>increases</u>, then frequency <u>decreases</u>.
- If wavelength <u>decreases</u>, then frequency increases.

Amplitude

- The <u>amplitude</u> of a wave is the <u>maximum</u> displacement of the medium from its rest position.
- The more <u>energy</u> a wave has, the greater is its <u>amplitude</u>.

Section 17.2 Assessment

How is wavelength related to frequency for waves moving at a constant speed?
How is the energy of a wave related to its amplitude?
If you double the frequency of a wave, what is the effect on its <u>wavelength?</u>

Section 17.2 Assessment

Warm-Up Nov.7

- What is the area of a longitudinal wave where the particles are close together?
- 2. How do the particles of a surface wave move?
- 3. What is the lowest point on a transverse wave called?

Section 17.3 – Behavior of Waves

<u>Reflection</u> occurs when a wave <u>bounces</u> off a surface that is cannot pass through.
 <u>Reflection</u> does not change the <u>speed or</u> frequency of a wave, but the wave can be flipped upside down.

Reflection

An incident ray is the incoming light wave. A reflected ray is the light wave that has bounced off of the surface. The normal is an imaginary line perpendicular (at a right angle) to the surface. The angle of incidence always equals the angle of reflection. Angle of Angle of

Sample Problem

What is the angle of incidence and what is the angle of reflection? Laws of Reflection

Angle of Incidence = 50° Angle of Reflection = 50°

Practice Problem

If the angle on the incoming ray is at a 35° angle to the normal, then what is the angle of reflection?

35°

Regular vs Diffuse Reflection

- A <u>regular</u> reflection is a <u>clear</u> image that is produced when light waves hit a smooth surface and the waves are reflected <u>together</u> at the same angle.
- A <u>diffuse</u> reflection is a <u>blurry</u> image that is produced when light waves hit a <u>rough</u> surface and the waves are reflected in <u>different</u> directions (scattered).

Refraction

- Refraction is the bending of a wave as it enters a new medium at an angle.
- When a wave enters a medium at an <u>angle</u>, refraction occurs because one side of the wave moves more <u>slowly</u> than the other side.

Refraction

The <u>angle</u> changes when refraction occurs depending on whether the waves <u>speed up</u> or <u>slow down</u>.

Sample Problem

Which of the following could be the refracted ray of light of a wave that passes into a new medium and speeds up?

Practice Problem

Which of the following could be the refracted ray of light of a wave that passes into a new medium and slows down?

Which of the following is the reflected ray of light?

Diffraction

- Diffraction is the bending of a wave as it moves around an <u>obstacle</u> or passes through a <u>narrow</u> <u>opening</u>.
- A wave diffracts <u>more</u> if its wavelength is <u>large</u> compared to the size of an opening or obstacle.

Interference

<u>Interference</u> occurs when two or more waves overlap and <u>combine</u> together.
Two types of interference are <u>constructive</u> interference and destructive interference.

Constructive Interference

<u>Constructive Interference</u> occurs when two or more waves combine to produce a wave with a <u>larger displacement</u>.

Destructive Interference

<u>Destructive interference</u> occurs when two or more waves combine to produce a wave with a <u>smaller displacement</u>.

Standing Waves

- A <u>standing wave</u> is a wave that appears to <u>stay</u> in one place.
- A <u>node</u> is a point on a standing wave that has <u>no</u> <u>displacement</u> from the rest position.
- An <u>antinode</u> is a point where a <u>crest or trough</u> occurs midway between two nodes.

Section 17.3 Assessment

How is a wave changed by reflection? What causes refraction when a wave enters a medium at an angle? What determines how much a wave diffracts when it encounters an opening or an obstacle? How does the frequency of a reflected wave compare with the frequency of the incoming wave?

What is the amplitude of a wave that results when two identical waves interfere constructively?

Warm-Up Nov. 11

- 1. What is reflection?
- 2. What is refraction?
- 3. What is diffraction?

Section 17.4 – Sound and Hearing

Sound waves are <u>longitudinal waves</u> that travel through a <u>medium</u>.

Many behaviors of sound can be explained using a few properties – <u>speed</u>, intensity and loudness, and frequency and pitch.

Speed

In dry air at 20°C, the speed of sound is <u>342 m/s</u>.
In general, sound waves travel fastest in <u>solids</u>, slower in <u>liquids</u>, and slowest in <u>gases</u>.
This is due to the fact that particles in a solid tend to be <u>closer together</u> than particles in a liquid or a gas.

Intensity and Loudness

Intensity is the rate at which a wave's <u>energy</u> flows through a given area.

- Sound intensity depends on both the wave's <u>amplitude</u> and the <u>distance</u> from the sound source.
- The <u>decibel (dB)</u> is a unit that compares the intensity of different sounds.
- Loudness is a physical response to the intensity of sound.

Continuous dB	Permissible Exposure Time	
85 dB	8 Hours	T.
88 dB	4 hours	
91 dB	2 hours	
94 dB	1 hour	
97 dB	30 minutes	
100 dB	15 minutes	
103 dB	7.5 minutes	
106 dB	3.75 minutes (< 4 min)	
109 dB	1.875 minutes (< 2 min)	
112 dB	.9375 min (~ 1 min)	
🗡 115 dB	.46875 min (~ 30 sec)	*

Frequency and Pitch

- Pitch is the <u>frequency</u> of a sound as you perceive it.
- High-frequency sounds have a <u>high pitch</u>, and low-frequency sounds have a <u>low pitch</u>.

Ultrasound

<u>Ultrasound</u> is sound at frequencies <u>higher</u> than most people hear.
Ultrasound is used in a variety of applications, including <u>sonar and ultrasound imaging</u>.

Sonar

Sonar is a technique for determining the distance to an object <u>underwater</u>.

Sonar stands for sound navigation and ranging.

Doppler Effect

The <u>Doppler effect</u> is a change in sound <u>frequency</u> caused by <u>motion</u> of the sound source, motion of the listener, or both.
As a source of sound <u>approaches</u>, an observer hears a <u>higher frequency</u>. When the sound source moves <u>away</u>, the observer hears a <u>lower</u> frequency.

🕑 2009 Christian Wolff

Section 17.4 Assessment

List five properties used to explain the behavior of sound waves. Names two uses for ultrasound. What is the Doppler effect? If workers in a distant stone quarry are blasting, why can you feel the explosion in your feet before you hear it?