Chapter 15~ The Chromosomal Basis of Inheritance

The Chromosomal Theory of Inheritance

 Genes have specific loci on chromosomes and chromosomes undergo segregation and independent assortment

Chromosomal Linkage

- Morgan
- Drosophilia melanogaster

• <u>Linked genes</u>: genes located on the same chromosome that tend to be inherited together

Discovery of sex linkage

What's up with Morgan's flies?

Genetics of Sex

In humans & other mammals, there are 2 sex chromosomes: X & Y

- 2 X chromosomes
 - develop as a female: XX
 - gene redundancy, like autosomal chromosomes
 - •an X & Y chromosome
- develop as a male: XY
 - no redundancy

Genetic recombination

- Crossing over Genes that DO NOT assort independently of each other
- Genetic maps The further apart 2 genes are, the higher the probability that a crossover will occur between them and therefore the higher the recombination frequency
- Linkage maps based on recombination frequencies

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings

Genes on sex chromosomesY chromosome

SR

- sex-determining region
- master regulator for maleness
- turns on genes for production of male hormones

- many effects = pleiotropy!

- X chromosome
 - other genes/traits beyond sex determination
 - mutations:
 - hemophilia
 - Duchenne muscular dystrophy
 - color-blindness

Human sex-linkage

- SRY gene: gene on Y chromosome that triggers the development of testes
- Fathers= pass X-linked alleles to all daughters only (but not to sons)
- Mothers= pass X-linked alleles to both sons & daughters
- Sex-Linked Disorders: Color-blindness; Duchenne muscular dystropy (MD); hemophilia

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Royal Hemophilia Pedigree

X-inactivation

- Female mammals inherit 2 X chromosomes
 - one X becomes inactivated during embryonic development
 - condenses into compact object = Barr body
 - which X becomes Barr body is random
 - patchwork trait = "mosaic"

Human sex-linkage

 X-inactivation: 2nd X chromosome in females condenses into a Barr body (e.g., tortoiseshell gene gene in cats)

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Errors of Meiosis **Chromosomal Abnormalities**

Chromosomal abnormalities

Incorrect number of chromosomes

- nondisjunction
 - chromosomes don't separate properly during meiosis
- breakage of chromosomes
 - deletion
 - duplication
 - inversion
 - translocation

Nondisjunction

Problems with meiotic spindle cause errors in daughter cells

- homologous chromosomes do not separate properly during Meiosis 1
- sister chromatids fail to separate during Meiosis 2

too many or too few chromosomes

Alteration of chromosome number

Nondisjunction ⊕Baby has wrong chromosome number~ aneuploidy <u>trisomy</u> • cells have 3 copies of a chromosome

monosomy

n+1

cells have only 1 copy of a chromosome n-1

monosomy

2n-1

Human chromosome disorders

^(D) High frequency in humans

- **Omost embryos are spontaneously aborted**
- Alterations are too disastrous
- developmental problems result from biochemical imbalance
 - imbalance in regulatory molecules?
 - hormones?
 - transcription factors?

O Certain conditions are tolerated

Oupset the balance less = survivable

but characteristic set of symptoms = syndrome

Down syndrome

Trisomy 21

@3 copies of chromosome 21

♦1 in 700 children born in U.S.

Ochromosome 21 is the smallest human chromosome

Obut still severe effects

©Frequency of Down syndrome correlates with the age of the mother

XK XX

86

10

88

Sex chromosomes abnormalities

- Human development more tolerant of wrong numbers in sex chromosome
- But produces a variety of distinct syndromes in humans
 - **AXXY** = Klinefelter's syndrome male
 - **XXX** = Trisomy X female
 - **XYY** = Jacob's syndrome male
 - **XO** = Turner syndrome female

AP Biology

Klinefelter's syndrome

- **Cone in every 2000 live births**
- have male sex organs, but are sterile
- feminine characteristics
 - some breast development
 - Iack of facial hair
- **♦tall**
- normal intelligence

Klinefelter's syndrome

XXXXY, Klinefelter's Syndrome

Jacob's syndrome male

OXYY Males

- ©1 in 1000 live male births
- **Oextra Y chromosome**
- Oslightly taller than average
- **Omore active**

Onormal intelligence, slight learning disabilities Odelayed emotional maturity Onormal sexual development

Trisomy X

©1 in every 2000 live births ©produces healthy females

- Why?
- Barr bodies
 - all but one X chromosome is inactivated

Turner syndrome @Monosomy X or X0 **@1** in every 5000 births **Ovaried degree of effects Owebbed** neck **Oshort stature Osterile**

AP Biology

Changes in chromosome structure

AP Biology

Chromosomal errors VI

Genomic imprinting

- Def: a parental effect on gene expression
- Identical alleles may have different effects on offspring, depending on whether they arrive in the zygote via the ovum or via the sperm.
- Fragile X syndrome: higher prevalence of disorder and retardation in males

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.