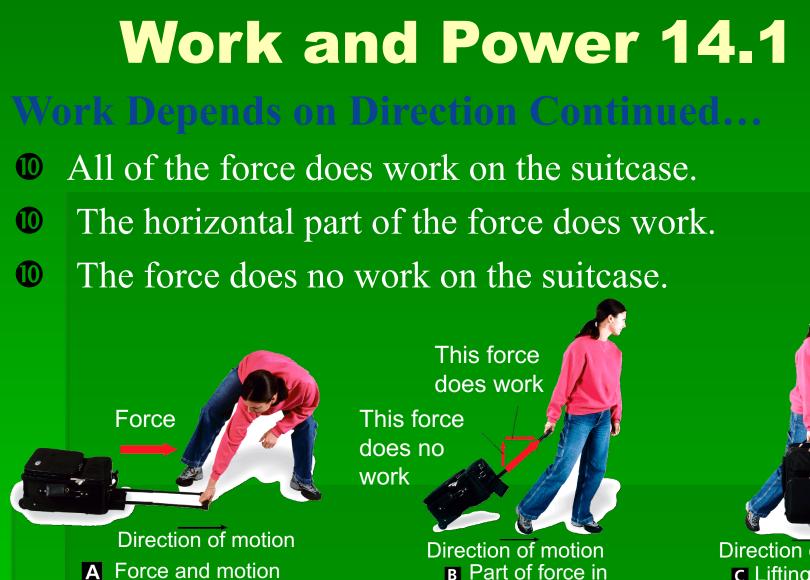
# Chapter 14 Work, Power, and Machines

**Physical Science** 

Work and Power 14.1
Work – done when a force acts on an object in the direction the object moves

- Requires Motion
  - Man is not actually doing work when holding barbell above his head
  - Force is applied to barbell
  - If no movement, no work done






© Original Artist Reproduction rights obtainable from www.CartoonStock.com

# Work and Power 14.1

### **Work Depends on Direction**

- All <u>force</u> acts in same <u>direction</u> of motion = all force <u>work</u>.
- Part <u>applied</u> force acts in the direction of motion =<u>part</u> force does work.
- none of force in direction of the motion = <u>force</u> does <u>no</u> work.



in the same direction

Force

irection of motion B Part of force in direction of motion Direction of motion C Lifting force not in direction of motion

**Calculating Work 14.1** Work = Force x Distance W = Fd• Force = mass x acceleration  $\rightarrow$  F = ma or F = mg Joule (J) = SI unit for work Unit: J = N(m) Named after James Prescott Joule (1818 – 1889) Research work and heat Example: If a model Work = Fd airplane exerts 0.25 N = .25(10)over a distance of 10m, = 2.5 J the plane will expend 2.5 J.

What is Power? 14.1 Rate of doing work More power = work at a faster rate Size of engine often indicates power Can work at a faster rate Power = Work/Time P = W/tWatt (W) = SI unit for Power • Units: W = J/s

### What is Power? 14.1

Because the snow blower can remove more snow in less time, it requires more power than hand shoveling does.





#### Calculating Power

You exert a vertical force of 72 newtons to lift a box to a height of 1.0 meter in a time of 2.0 seconds. How much power is used to lift the box?



#### **Read and Understand**

What information are you given?

Force = 72 N Distance = 1.0 m

Time = 2.0 s



#### Plan and Solve

What formula contains the given quantities and the unknown?

$$Power = \frac{Work}{Time} = \frac{Force \times Distance}{Time}$$

Replace each variable with its known value and solve.

Power = 
$$\frac{72 \text{ N} \times 1.0 \text{ m}}{2.0 \text{ s}}$$
 = 36 J/s = 36 W

### Math Practice – Page 415 # 1 - 3

### James Watt and Horsepower 14.1

- Horsepower (hp) = another unit for power
  - Equals ~746 watts
  - Defined by James Watt (1736- 1819)
    - Trying to describe power outputs of steam engines
      - Horses were most common used source of power in 1700s

James Watt and Horsepower

The horse-drawn plow and the gasoline-powered engine are both capable of doing work at a rate of four horsepower.





### **Assessment Questions**

- 1. In which of the following cases is work being done on an object?
  - a. pushing against a locked door
  - b. suspending a heavy weight with a strong chain
  - c. pulling a trailer up a hill
  - d. carrying a box down a corridor
- 2. A tractor exerts a force of 20,000 newtons to move a trailer 8 meters. How much work was done on the trailer?
  - a. 2,500 J
  - a. 4,000 J
  - b. 20,000 J
  - c. 160,000 J
- A car exerts a force of 500 newtons to pull a boat 100 meters in
  10 seconds. How much power does the car use?
  - a. 5000 W
  - b. 6000 W
  - **c.** 50 W
  - d. 1000 W

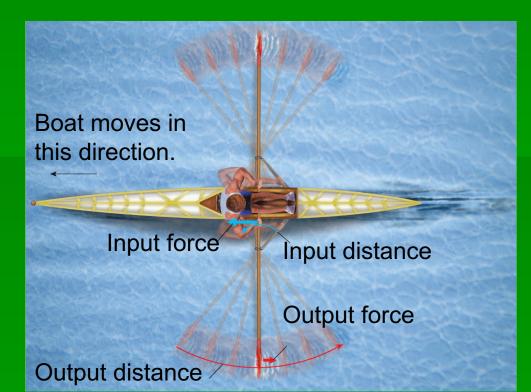
# Work and Machines 14.2

| Machine    | Increases or<br>Decreases<br>Input Force | Increases or<br>Decreases<br>Input Distance |
|------------|------------------------------------------|---------------------------------------------|
| Tire jack  | a. <u>?</u>                              | b. <u>?</u>                                 |
| Lug wrench | c. <u>?</u>                              | d                                           |
| Rowing oar | e                                        | f                                           |
| Summary:   | g                                        | ?                                           |

# Machines Do Work 14.2 Machine – device that change force

- Car jack
  - You apply force → jack changes force → applies much stronger force to lift car
  - Jack increase force you exerted
- Make work easier
- Change size of force needed, direction of force, and distance over which force acts

Machines Do Work 14.2
Increasing Force


- Small force exerted over a large distance = large force over short distance
  - Like picking books up one at a time to move them ---trade off = more distance but less force



# Machines Do Work 14.2 Increasing Distance

- Decreases distance for force exerted and increases amount of force required
  - Tradeoff = increased distance = greater force exerted

### Changing Direction



# Work Input and Work Output 14.2

### Work input to a Machine

- Input Force Force you exert on a machine
  - Oar = force exerted on handle
- Input Distance Distance the input force act thru
  - How far handle moves
  - Work Input work done by the input force
    - F x d

### Work Output of a Machine

- Output Force- force exerted by machine
- Output Distance distance moved
- Work output F x d
  - Less than input work b/c of friction
  - All machines use some input work to overcome

### Mechanical Advantage and Efficiency 14.3 Mechanical Advantage

- Number of times that the machine increases an input force
  - @ position 1, nutcracker exerts 7x force so mechanical advantage of 7
  - @ position 2, nutcracker exerts 3x force so mechanical advantage of 3
  - Actual (AMA)= Output Force/Input Force
    - Mechanical advantage of ramp with rough less than that of a ramp with a smo
  - Ideal (IMA) = Input Distance/Output Dis
    - Mechanical advantage w/ no friction
    - Actual is always less than ideal

surface is



# Calculating Mechanical Advantage 14.3

#### Calculating IMA

A woman drives her car up on to wheel ramps to perform some repairs. If she drives a distance of 1.8 meters along the ramp to raise the car 0.3 meter, what is the ideal mechanical advantage (IMA) of the wheel ramps?



#### Read and Understand

What information are you given?

Input distance = 1.8 m

Output distance = 0.3 m

#### Plan and Solve

What a nknown are you trying to calcula @?

IMA = ?

What formula contains the given quantifies a rail the unknown?

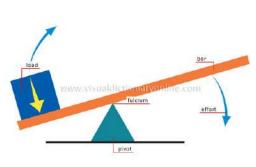
 $IMA = \frac{Input distance}{Output distance}$ 

Septace each variable with its known value and solve.

$$IMA = \frac{1.8 \text{ fm}}{0.3 \text{ fm}} = 6$$

Math Practice: Page 425 # 1 - 3

## **Efficiency 14.3**


- % of work input that becomes work output
- Some work always used to overcome friction
  - Work output < work input
    - Efficiency always less than 100% b/c of friction
- Work output/work input x 100% = efficiency
- Example: If efficiency of machine is 75% and machine requires 10J of work input, what is work output?
  - Work output/10 J x 100% = 75%
  - Work output = (75%/100%) x 10
  - Work output = 7.5 J
- Reducing friction increases efficiency

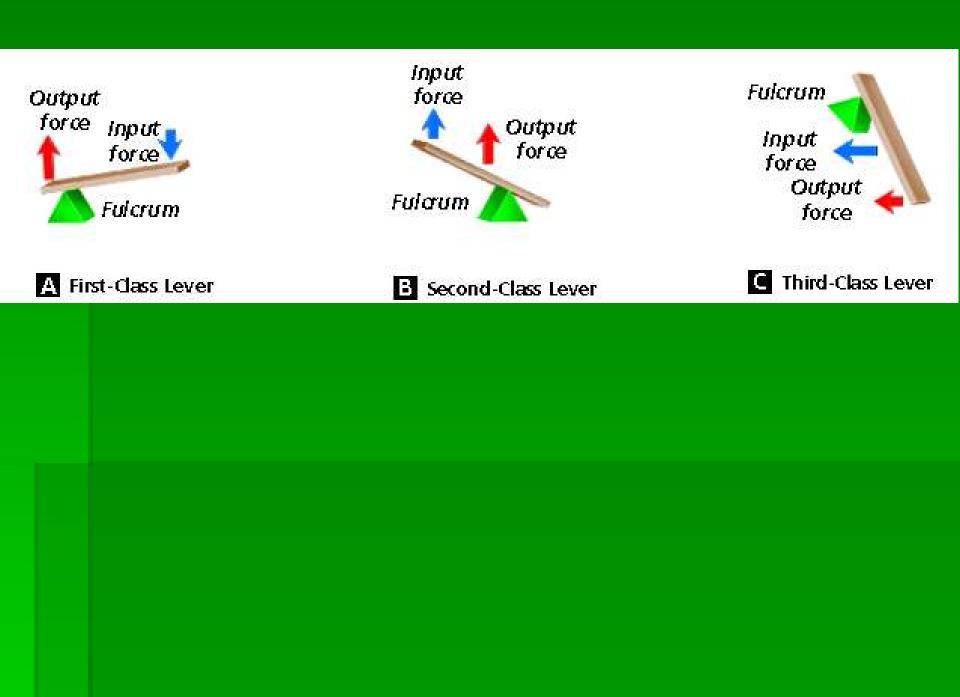
# Simple Machines 14.4 6 different simple machines

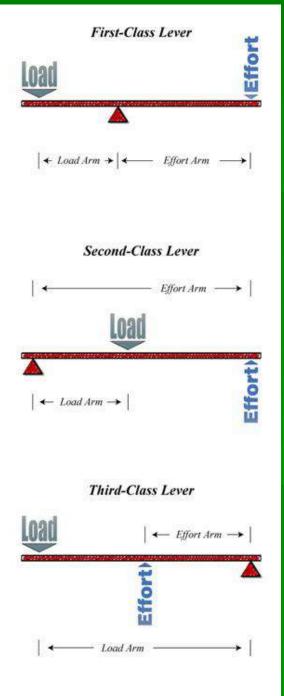
http://www.teachertube.com/view\_video.php?viewkey=56ac902e14526e63081d – 2 minutes http://www.edheads.org/activities/simple-machines/ - fun activity – at least 10 minutes

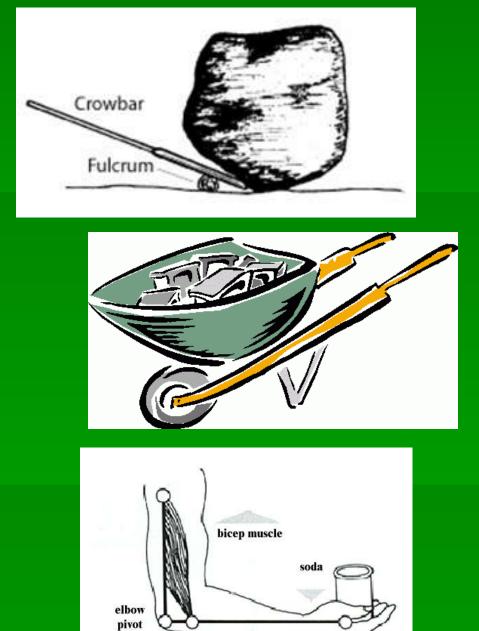
### Often combined

- Lever
  - Rigid bar that is free to move around a fixed point
  - Fulcrum fixed point the bar rotates around
  - 3 classifications based on input arm (distance between input force and fulcrum
  - Output are distance between output force and fulcrum




# **Types of Levers 14.4**


### First-Class Levers


- Fulcrum = always between the input force and the output force
- Example: seesaw, scissors, and tong
- Mechanical Advantage: greater, less, or equal to 1
- Second-Class Levers
  - Output force is located between input force and fulcrum
  - Example: wheelbarrow
  - Mechanical advantage: always greater than 1

### Third-Class Lever

- Input force between fulcrum and output force
- Example: baseball bats, hockey sticks, golf clubs
- Mechanical advantage less than 1





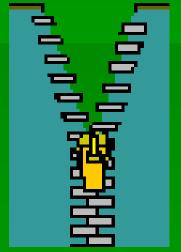


3 cm

30 cm

### Wheel and Axle 14.4

- Consists of 2 disks with different radius
- Depending on purpose of machine, input can be put on wheel or axel
- Ideal mechanical advantage = radius where input force is exerted/radius when output force is exerted
- Mechanical advantage greater or less than
  - If input distance is larger than output distance = great than 1
- Example: steering wheel, screw driver


1

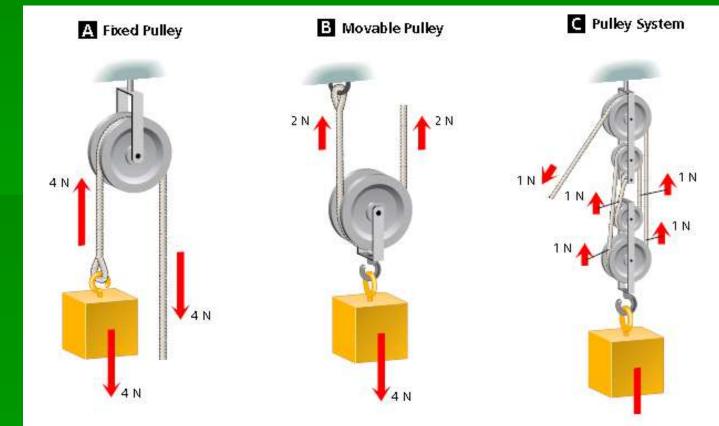
## **Inclined Planes 14.4**

- Slanted surface along which force moves and object to a different elevation
- Is it easier to wind up a mountain or walk straight up it?
  - Input force is decreased when the input distance is greater than the output distance
    Easier to get there, but longer distance
- Ideal mechanical advantage = distance of inclined plane/height
- Example: ramps

# Wedge 14.4

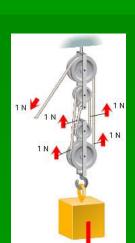
- Similar to incline plane b/c sloping surface but wedges move
- V-shaped object whose sides are2 inclined planes sloped toward each other
- Mechanical advantage great than 1
  - Thinner wedge of same length as a thick one has great mechanical advantage
- Example: knife and zippers




## **Screws 14.4**

- Similar to inclined plane b/c sloping surface but moves
- Inclined plane wrapped around a cylinder
- If threads are closer together, screw moves forward less for each turn
  - Bigger threads require greater input force to drive in
  - Closer together threads = greater ideal mechanical advantage

# Pulleys 14.4


- Consists of a rope that fits into a groove in a wheel
- Ideal mechanical advantage of a pulley equals # of rope sections supporting the load being
   lifted

3 types



# **3 types of Pulleys 14.4**

- Fixed Pulley wheel attached to a fixed location
  - Output direction opposite than input direction
  - Input force = output force
    - Mechanical advantage = 1
  - Examples: flagpole, pulleys on blinds
- Movable Pulley attached to the object being moved
  - Pull up with 10 N force, force is doubled = 20
  - Used to reduce input force
- Pulley System combined fixed and movable pulley into a system
   Large mechanical advantage







Compound Machines 14.4
Combination of 2 or more simple machines
Scissors

Wedge (blades) + levers (handles)

Cars, washing machines, clocks, etc



http://video.google.com/videoplay?do cid=8517358537561483069 – 13 minutes

http://videos.howstuffworks.com/ hsw/16886-compound-machinesthe-six-simple-machinesvideo.htm

- lots of videos to watch!