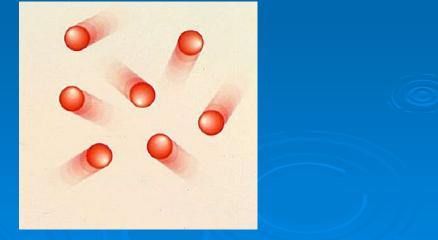

Unit 10: States of Matter (Chapter 13 and 15)



Jennie L. Borders

Section 13.1 – The Nature of Gases

Kinetic Energy is the energy of motion.

 The <u>Kinetic Theory</u> is based upon the idea that all matter is made of <u>particles</u> that are in constant <u>motion</u>.

The Kinetic Theory

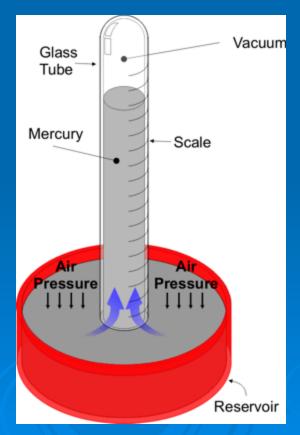
- The particles of a <u>gas</u> are considered to be small, hard spheres with an insignificant <u>volume</u>.
- No <u>attractive</u> or <u>repulsive</u> forces exist between the particles.
- The motion of the particles in a gas is rapid, constant, and random.
- All <u>collisions</u> between particles in a gas are <u>perfectly elastic</u>.

The Kinetic Theory

- The particles of a gas travel in <u>straight-line</u> paths until they collide with another object.
- During an <u>elastic collision</u>, kinetic energy is transferred without <u>loss</u> from one particle to another, and the total kinetic energy remains constant.

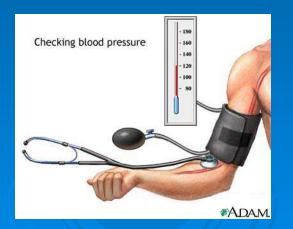
Gas Pressure

- <u>Gas pressure</u> is the <u>force</u> exerted by a gas per unit surface area of an object.
- <u>Gas pressure</u> is the result of simultaneous <u>collisions</u> of billions of rapidly moving particles in a gas with an <u>object</u>.
- An <u>empty space</u> with no particles and no pressure is called a <u>vacuum</u>.


Atmospheric Pressure

- Air exerts pressure on the earth because gravity holds the air particles in the Earth's atmosphere.
- Atmospheric pressure <u>decreases</u> as you climb a mountain because the <u>density</u> of Earth's atmosphere <u>decreases</u> as the elevation <u>increases</u>.

Barometer


 A <u>barometer</u> is a device used to measure atmospheric pressure.

Units of Pressure

- The <u>SI unit of pressure</u> is the <u>Pascal (Pa)</u>.
- The most common units of pressure are the <u>atmosphere</u>, millimeters of mercury, kilopascals, and torr.
- 1 atm = 760 mm Hg = 101.3 kPa = 760 Torr

Conversions of Pressure

Sample Problem 13.1

A pressure gauge records a pressure of 450 kPa. What is this measurement expressed in millimeters of mercury?

Answer: 450 kPa x <u>760 mm Hg</u> = **3400 mm Hg** 101.3 kPa

Conversion of Pressure

Practice Problem 1

What pressure in atmospheres does a gas exert at 385 mm Hg?

Answer: 385 mm Hg x = 0.51 atm760 mm Hg

Kinetic Energy

- As a substance is <u>heated</u>, its particles absorb <u>energy</u>, some of which is <u>stored</u> within the particles.
- This increase in <u>kinetic energy</u> results in an increase in <u>temperature</u>.
- The particles in any substance at a given <u>temperature</u> have a wide range of kinetic energies.

Kinetic Energy

- Kinetic energy and Kelvin temperature are directly proportional.
- An <u>increase</u> in average kinetic energy causes the temperature to <u>increase</u>.
- A <u>decrease</u> in average kinetic energy causes the temperature to decrease.
- Absolute zero is the temperature at which the motion of particles theoretically <u>stops</u>.

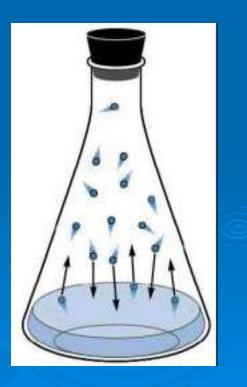
Section Assessment


- Briefly describe the assumptions of the kinetic theory.
- How is the Kelvin temperature of a substance related to the average kinetic energy of its particles?
- Convert the following pressures to kilopascals.
- a. 0.95 atmb. 45 mm Hg

Answers: a. **96 kPa**b. **6.0 kPa**

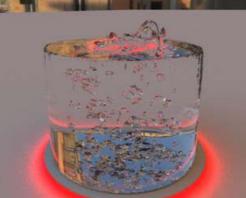
Section 13.2 – The Nature of Liquids

- The high <u>kinetic energy</u> in gases and liquids allows the particles to <u>flow</u> past one another.
- Substances that can <u>flow</u> are called <u>fluids</u>.
- Intermolecular forces keep the particles in a liquid close together, which is why liquids have a definite volume, unlike gases.


Evaporation

- The conversion of a liquid to a gas that is not boiling is referred to as evaporation.
- During evaporation, only molecules with the <u>highest kinetic energy</u> can escape the <u>surface</u> of a liquid.
- The particles left in the liquid have a lower average kinetic energy resulting in a lower temperature.

Vapor Pressure


- Vapor pressure is a measure of the force exerted by a gas above a liquid.
- An increase in <u>temperature</u> increases the <u>vapor pressure</u> produced by a liquid.

Boiling Point

 The rate of <u>evaporation</u> increases as the temperature <u>increases</u>.

- When a <u>liquid</u> is heated to a temperature at which particles throughout the liquid have enough <u>kinetic energy</u> to vaporize, the liquid begins to <u>boil</u>.
- The temperature at which the <u>vapor pressure</u> of the liquid is equal to the <u>external pressure</u> on the liquid is the <u>boiling point</u>.

Boiling and Pressure

- Because atmospheric pressure is <u>lower</u> at <u>higher</u> altitudes, boiling points <u>decrease</u> at higher altitudes.
- At higher <u>external pressure</u>, the boiling point <u>increases</u>.

Section Assessment

- In terms of kinetic energy, explain how a molecule in a liquid evaporates.
- Explain why the boiling point of a liquid varies with atmospheric pressure.
- Explain how evaporation lowers the temperature of a liquid.

Section 13.3 – The Nature of Solids

- The general properties of <u>solids</u> reflect the <u>orderly</u> arrangement of their particles and the <u>fixed</u> locations of their particles.
- When you <u>heat</u> a solid, its particles <u>vibrate</u> more rapidly as their <u>kinetic</u>

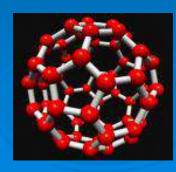
energy increases.

 The <u>melting point</u> is the temperature at which a <u>solid</u> changes into a <u>liquid</u>.

- In a <u>crystal</u> the particles are arranged in an <u>orderly</u>, repeating, three-dimensional pattern called a crystal <u>lattice</u>.
- The <u>smallest</u> group of particles within a crystal that retains the <u>geometric shape</u> of the crystal is known as the <u>unit cell</u>.

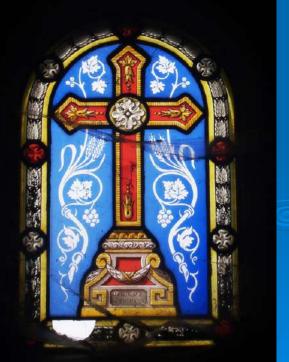
Melting

- Ionic solids have high melting points (above 300°C).
- <u>Molecular solids</u> have <u>low</u> melting points (below 300°C).
- Not all solids <u>melt</u>; some just <u>decompose</u>.
 (Ex. Wood)



Allotropes

- <u>Allotropes</u> are two or more different molecular forms of the same <u>element</u> in the same <u>physical state</u>.
- A common example is carbon: <u>diamond</u>, graphite, and bucky ball.
- Other examples include phosphorus, sulfur, and oxygen.



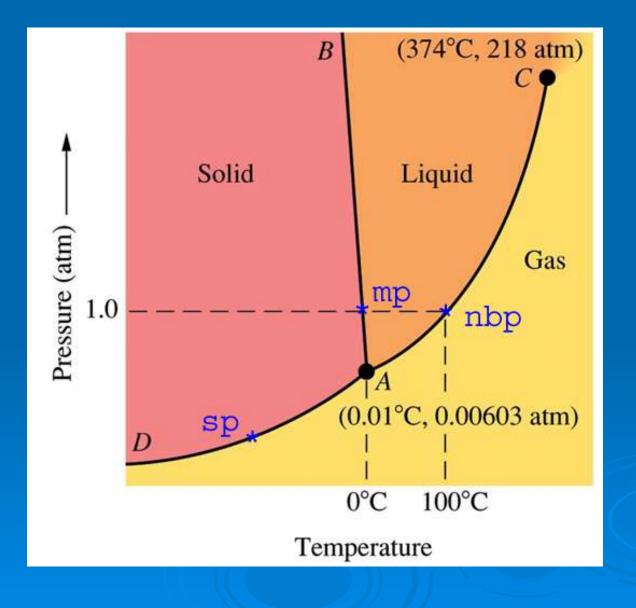
Non-Crystalline Solids

- An <u>amorphous solid</u> lacks an <u>ordered</u> internal structure.
- Examples include <u>rubber</u>, plastic, and <u>asphalt</u>.
- <u>Glass</u> is an amorphous solid that is a <u>supercooled</u> liquid. Glass is formed by cooling a liquid into a rigid state without <u>crystallizing</u>.

Section Assessment

- In general, how are the particles arranged in solids?
- How do allotropes of an element differ?
- How do the melting points of ionic solids generally compare with those of molecular solids?

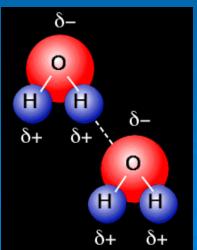
Section 13.4 – Changes of State


- The change of a substance from a <u>solid</u> to a <u>vapor</u> without passing through the liquid state is called <u>sublimation</u>.
- Dry ice and iodine are two examples of solids that sublimate.

Phase Diagrams

- The relationship among the <u>solid</u>, <u>liquid</u>, <u>and gaseous</u> states of a substance can be represented in a single graph called a <u>phase diagram</u>.
- The <u>lines</u> on a phase diagram indicate the conditions at which <u>two</u> phases occur in <u>equilibrium</u>.
- The triple point describes the only set of conditions at which all three phases occur in equilibrium.

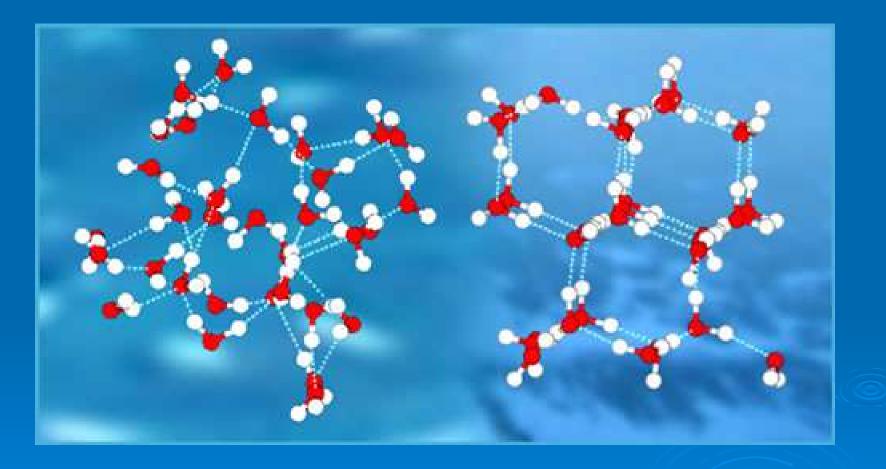
Phase Diagram of Water



Section Assessment

What does the triple point on a phase diagram describe?

Section 15.1 – Water and Its Properties


- A water molecule has a <u>dipole moment</u> because the oxygen is much more <u>electronegative</u> than the hydrogens.
- This strong <u>dipole moment</u> causes water molecules to have strong <u>attractions</u> for each other. These attractions are called hydrogen bonding.
- Hydrogen bonding describes many of the properties of water such as <u>surface tension</u> and vapor pressure.

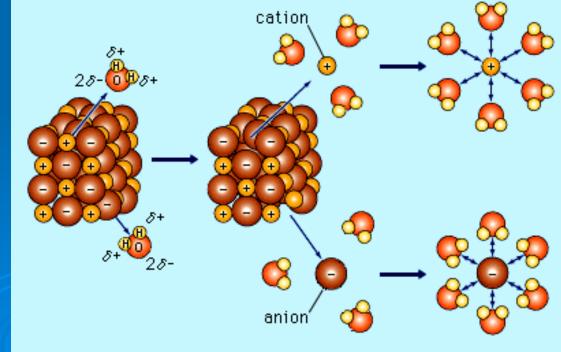
Ice and Liquid Water

- Water is one of the few substances in which the solid state is less dense than the liquid state.
- This is the reason that ice <u>floats</u> in water.
- The structure of <u>ice</u> is a regular <u>open</u> framework of water molecules arranged like a <u>honeycomb</u>.
- When ice <u>melts</u>, the framework <u>collapses</u> and the water molecules pack close together, making the liquid <u>more dense</u> than the ice.

Ice and Liquid Water

Section Assessment

 What causes the high surface tension and low vapor pressure of water?
 How would you describe the structure of ice?


Section 15.2 – Homogeneous Aqueous Systems

- An <u>aqueous solution</u> is water that contains <u>dissolved</u> substances.
- In a <u>solution</u>, the dissolving medium is the <u>solvent</u>, and the dissolved particles are the <u>solute</u>.
- A <u>solvent</u> dissolves a <u>solute</u>.

Dissolving Ionic Solids

 As individual solute ions break away from a crystal, the negatively and positively charged ions become surrounded by solvent molecules and the ionic crystal dissolves.

Dissolution Rule

- As a rule, <u>polar</u> solvents such a <u>water</u> dissolve <u>polar</u> solutes such as <u>ethanol</u>.
- As a rule, <u>nonpolar</u> solvents such a <u>gasoline</u> dissolve <u>nonpolar</u> solutes such as <u>oil</u>.
- This relationship can be summed up in the expression "like dissolves like."

Electrolytes

- An <u>electrolyte</u> is a compound that conducts an <u>electric current</u> when it is in an aqueous solution or in the molten state.
- All <u>ionic</u> compounds are electrolytes because they dissolve into <u>ions</u>.
- A strong electrolyte <u>fully</u> breaks into <u>ions</u>.
- A <u>weak</u> electrolyte only <u>partially</u> breaks into <u>ions</u>.

Nonelectrolyte

- A substance that does not conduct electricity is a <u>nonelectrolyte</u>.
- Some <u>polar</u> compounds are nonelectrolytes in a <u>pure state</u> but become electrolytes when <u>dissolved</u> in water.

Hydrates

- A compound that contains <u>water</u> is called a <u>hydrate</u>.
- In writing the formula of a hydrate, use a dot to connect the formula of the compound and the number of water molecules per formula unit.

Example:
 CuSO₄ · 5H₂O

Section Assessment

- In the formation of a solution, how does the solvent differ from the solute?
- Describe what happens to the solute and the solvent when an ionic compounds dissolves in water.
- Why are all ionic compounds electrolytes?
- How do you write the formula for a hydrate?
- Which of the following substances dissolve to a significant extent in water?
- a. CH₄b. KClc. He
- d. MgSO₄e. sucrosef. NaHCO₃

Section 15.3 – Heterogeneous Aqueous Systems

- A <u>suspension</u> is a mixture from which particles <u>settle out</u> upon standing because the solute particles are very <u>large</u>.
- An example is <u>Italian salad dressing</u>.

Colloids

- A <u>colloid</u> is a heterogeneous mixture containing particles that are <u>smaller</u> than a <u>suspension</u> but larger than a <u>solution</u>.
- A colloid's particles do not <u>settle out</u> with time.
- A colloid's particles are <u>too</u> <u>small</u> to be separated by <u>filtering</u>.
- Examples include <u>whipped</u> <u>cream</u>, milk, and Jell-O.

Section Assessment

- How does a suspension differ from a solution?
- What distinguishes a colloid from a suspension and a solution?
- Could you separate a colloid by filtering?

FINALLY