Chapter 11 Motion

Summary

11.1 Distance and Displacement

To describe motion accurately and completely, a frame of reference is necessary.

- A **frame of reference** is a system of objects that are not moving with respect to one another.
- **Relative motion** is movement in relation to a frame of reference.

Distance is the length of the path between two points. Displacement is the direction from the starting point and the length of a straight line from the starting point to the ending point.

• Displacement gives information both about how far away an object is from a given point and in what direction the object is from that point. Displacement is a vector.

Add displacements using vector addition.

- A **vector** is a quantity that has magnitude and direction. The magnitude can be size, length, or amount.
- When two vectors have the same direction, you can add their magnitudes. When two vectors are in opposite directions, subtract one magnitude from the other.
- When two or more vectors have different directions, combine them by graphing.
- The **resultant vector** is the vector sum of two or more vectors.

11.2 Speed and Velocity

Average speed is computed for the entire duration of a trip, and instantaneous speed is measured at a particular instant.

- **Speed** is the ratio of the distance an object moves to the amount of time the object moves.
- Average speed is the total distance traveled divided by the time it takes to travel that distance. The formula for average speed is $\bar{v} = \frac{d}{t}$.
- **Instantaneous speed** is the rate at which an object is moving at a given moment in time.

The slope of a line on a distance-time graph is speed.

Velocity is a description of both speed and direction of motion. Velocity is a vector.

• Together, the speed and direction in which an object is moving are called **velocity**. A change in velocity can be the result of a change in speed, a change in direction, or both.

Two or more velocities add by vector addition.

11.3 Acceleration

Acceleration can be described as changes in speed, changes in direction, or changes in both. Acceleration is a vector.

- The rate at which velocity changes is called **acceleration**.
- Free fall is the movement of an object toward Earth solely because of gravity.
- Constant acceleration is a steady change in velocity.

You calculate acceleration for straight-line motion by dividing the change in velocity by the total time.

The slope of a speed-time graph is acceleration.

- In a **linear graph**, the displayed data form straight-line parts.
- In a **nonlinear graph**, a curve connects the data points that are plotted.

Instantaneous acceleration is how fast a velocity is changing at a specific instant.