Name _		date	period		
•	al Science Unit 2 Mo		Chapter 11		
	Motion – when something changes				
2.	Distance – How far an object				
3.	the distance			er.	
4.	Example: one car travels from one town to a	nother that is	to the east.		
5.	Another car travels around a track for				
6.	Both cars traveled a distance of	but the first	et car's displacement is	east while	
	the second car's displacement is bec	ause it ended up v	where it started from.		
7.	To describe motion accurately and completely, a <i>frame of reference</i> is necessary.				
8.	is a system of ob	jects that are not	moving with respect to one another.		
	a. If you are standing beside the tree on the left, what is moving?				
	b. If you are on the train, what is moving?				
	c. If you are riding down the road on a but	s is your friend m	oving beside you?		
	d. Are the road signs moving?				
	e. If you are on the plane what is moving from your frame of reference?				
	f. If you are beside the tree what is movin	g from your fram	e of reference?		
9.	is the total length traveled.				
10.	o is the distance	e measured direc	tly from starting to stopping point.		
	a. What is the distance traveled on the path	?			
	b. What is the displacement?				
	c. A runner leaves his house and runs two blocks east, then three blocks south and finally 1 block west. How				
	far has the runner traveled?				
	d. What is his displacement?				
	e. What is the distance traveled of a race car driver in the Indy 500?				
	f. What is the displacement of a race car dr	iver in the Indy 5	00?		
11.	. Speed – How much it take	s for a change in	position to occur or how		
	something moves.				
12.	2. Any change over time is called a		Speed is the	of changed	
	in position or the rate of				
13.	. Kinds of Speed -		e rate of motion at any given instant (s	speedometer)	
	. Constant Speed – a speed that does not				
15.	6. Average Speed – is the total distance travele	d by total	of travel (miles per ho	our)	
16.	5. Formula for speed: $s = $				
17.	V. Velocity – is both speed and	L	ike speed, velocity may	Unlike	
	speed, the velocity can change while the spee				
	both speed and direction, if either value char				
18.	8. Formula for velocity - v =				

	al velocity – the highest velo			
20. Magic C	Circle with units			→
21. Both are	e calculated by dividing dista	ance by time.		
a. Velo	city = distance/time sp	eed= distance/time		
b. Velo	city has a direction, sp	eed does not.		
c. UNI	TS of speed and velocity is r	neters/second or kilomet	ers/h	our
22. Example				
1. A rui	nner ran 400 meters for 40 s	econds. At what speed of	lid he	e run?
Gi	iven	Equation		Solve
3 A min	nner traveling at 4.25 m/s wi	Il travel how far in 23 s?		
	ven	Equation Equation		Solve
4 How	long will it take a runner go	ing 1.25 m/s to travel 50	0 m	stare?
	ven	Equation		Solve
Graphin	ng Speed			
23. A		grap	oh is	a good way to describe motion.
24. The	of a line on a d	istance-time graph is		
Dis	tance-Time Graph			
Distance (meters) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	150 m 6 s 2 4 6 8 10 Time (seconds)	30 25 20 20 10 10 5 Time (seconds)	8	30 25 20 20 10 10 10 10 10 10 10
	$s=d/t = 150m \div 6s = 25m/s$ a. What is the object's a	verage speed?		Where is the object standing still?
			e. f.	
	b. What is its speed between the whole is it traveling the			Where is the object traveling backwards? Where is the object traveling at 5m/s?
	c. When is it traveling the fastest?		g.	where is the object haveling at 3111/8?

		d. When is it NOT mov	ing?	h. What is the speed at	line E?	
25.	Accelera	ation – the rate of change of	,	·		
26.	Accelei	ration is both the rate of cha	nge in velocity and the		_ of that change.	
27.	So, ever	if an objects' speed remain	ns constant,	occui	rs if the direction	
	changes					
28.	i. IF: an object travels in a straight line, acceleration is just the rate of change of The					
	accelera	tion is in the same direction	as the velocity (chang	e in direction) then the object	t	
	The acceleration is in the opposite direction from the velocity then the object					
29.	. To calculate average acceleration, divide the change in velocity by the time interval					
		A =	_ =			
		Where: a =				
		v_f =			\longrightarrow	
		$v_i =$			\ /	
		T =			ヘレ	
		$\Delta =$				
30.	Accelera	ation - The change in veloci	ty over			
31.	Or the o	change in	or			
32.	Accelera	ation cont If acceleration i	is small – speed change	e is	If	
	accelera	tion is large – speed change	e is	·		
33.	Accelera	ation cont	accelerat	tion = object is speeding up.		
34.	Negativ	e acceleration = object is				
35.	Example	es				
		ler coaster starts down a hil sacceleration?	1 at 10 m/s. Three seco	onds later, its speed is 32 m/s.	What is the roller	
	Gi	ven	Equation	Solve		
			$ \setminus $			
		long will it take a car travel ven	ling 30 m/s to come to Equation	a stop if its acceleration is -3 Solve	m/s ² ?	
		, (1)	Equation			

3. What is the change in velocity if a truck acceleration is 25 m/s² over 4 seconds?

Given	Equation	Solve
	[
	$ \setminus $	

36. Graphing Motion Speed

- a. slope =
- b. steeper slope =
- c. straight line =
- d. flat line =
- e. Who started out faster?
- f. Who had a constant speed?
- g. Describe B from 10-20 min.
- h. Find their average speeds.
- 37. Graphing Motion Acceleration
- 38. Acceleration is indicated by a curve on a Distance-Time graph.
- 39. Changing slope = changing velocity
 - a. Slope =
 - i. Positive slope = _____
 - ii. Negative slope = _____
 - b. Straight line = _____
 - c. Flat line =
 - d. Specify the time period when the object was...
 - e. slowing down
 - f. speeding up
 - g. moving at a constant speed
 - h. not moving

