Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

Chapter 10 Nuclear Chemistry

Summary

10.1 Radioactivity

- Radioactivity is the process in which an unstable atomic nucleus emits charged particles and energy.
- Any atom containing an unstable nucleus is called a radioactive isotope, or **radioisotope** for short.
- During nuclear decay, atoms of one element can change into atoms of a different element altogether.
 - When the composition of a radioisotope changes, the radioisotope is said to undergo nuclear decay.
- Common types of nuclear radiation include alpha particles, beta particles, and gamma rays.
 - **Nuclear radiation** is charged particles and energy that are emitted from the nuclei of radioisotopes.
 - An **alpha particle** is a positively charged particle made up of two protons and two neutrons.
 - A **beta particle** is an electron emitted by an unstable nucleus.
 - A **gamma** ray is a penetrating ray of energy emitted by an unstable nucleus.
 - Nuclear radiation that occurs naturally in the environment is called **background radiation.**
- Nuclear radiation can ionize atoms.
 - Alpha particles, beta particles, and gamma rays are all forms of ionizing radiation.
- Devices that are used to detect nuclear radiation include Geiger counters and film badges.

10.2 Rates of Nuclear Decay

- **○** Unlike chemical reaction rates, which vary with the conditions of a reaction, nuclear decay rates are constant.
 - A **half-life** is the time required for one half of a sample of a radioisotope to decay. Half-lifes can vary from fractions of a second to billions of years.
 - Most materials contain at least trace amounts of radioisotopes. By looking at the rate of nuclear decay for these isotopes, scientists can estimate how old the materials are.
- **○** In radiocarbon dating, the age of an object is determined by comparing the object's carbon-14 levels with carbon-14 levels in the atmosphere.

Name _____ Class

10.3 Artificial Transmutation

- Scientists can perform artificial transmutations by bombarding atomic nuclei with high-energy particles such as protons, neutrons, or alpha particles.
 - **Transmutation** is the conversion of atoms of one element to atoms of another. It involves a nuclear change, not a chemical one.
- Scientists can synthesize a transuranium element by the artificial transmutation of a lighter element.
 - Elements with atomic numbers greater than 92 (uranium) are called **transuranium elements.**
 - A **quark** is a subatomic particle theorized to be among the basic units of matter.

10.4 Fission and Fusion

- Over very short distances, the strong nuclear force is much greater than the electric forces among protons.
 - The strong nuclear force is the attractive force that binds protons and neutrons together in the nucleus. This force does not depend on charge.
 - **Fission** is the splitting of an atomic nucleus into two smaller parts.
- **○** In nuclear fission, tremendous amounts of energy can be produced from very small amounts of mass.
 - In a **chain reaction**, neutrons released during the splitting of an initial nucleus trigger a series of nuclear fissions.
 - A **critical mass** is the smallest possible mass of a fissionable material that can sustain a chain reaction.
 - **Fusion** is a process in which the nuclei of two atoms combine to form a larger nucleus. During fusion, a small fraction of the reactant mass is converted into energy.
 - **Plasma** is a state of matter in which atoms have been stripped of their electrons. Plasmas occur only at very high temperatures.