Chapter 10: Chemical Quantities 10.1 The Mole: A Measurement of Matter

are a

Measuring Matter Sou often measure the amount of something by one of three different methodsby count, by mass, and by volume.

Sample Problem 10.1

Finding Mass from a Count

What is the mass of 90 average-sized apples if 1 dozen of the apples has a mass of 2.0 kg?

What is a Mole?

amedes avogado

• A mole of any substance contains Avogadro's number^v of representative particles, or 6.02×10^{23} representative particles. -The term **representative** particle refers to the species present in a substance: usually atoms, molecules, or formula units.

- Converting Number of Particles to Moles
 - -One mole (mol) of a substance is 6.02 × 10²³ representative particles of that substance and is the SI unit for measuring the amount of a substance.
 - -The number of representative particles in a mole, 6.02 × 10²³, is called **Avogadro's number**.

moles = representative particles $\times \frac{1 \text{ mole}}{6.02 \times 10^{23} \text{ representative particles}}$

Sample Problem 10.2

Converting Number of Atoms to Moles

Magnesium is a light metal used in the manufacture of aircraft, automobile wheels, tools, and garden furniture. How many moles of magnesium is 1.25×10^{23} atoms of magnesium?

for Sample Problem 10.2

4. How many moles is 2.17×10^{23} representative particles of bromine?

Practice

- -1) How many moles are in 5.75 x^{*} 10²⁴ molecules CO₂?
- -2) How many moles are in 3.75 x 10²⁴ atoms of Al?
- -3) How many moles are in 3.58 x 10²³ formula units ZnO₂?

What is a Mole? -Converting Moles to Number of Particles

representative particles = moles $\times \frac{6.02 \times 10^{23}}{10^{23}}$ representative particles

Sample Problem 10.3

Converting Moles to Number of Atoms

Propane is a gas used for cooking and heating. How many atoms are in 2.12 mol of propane $(C_{3}H_{8})$?

5. How many atoms are in $1.14 \mod SO_3$?

Practice

- -1) How many atoms are in2.50 mol Zn?
- -2) How many formula units are in 3.25 mol AgNO₃?
- -3) How many molecules are in 11.25 mol H₂O?

The Mass of a Mole of an Element

The atomic mass of an element expressed in grams is the mass of a mole of the element.

 The mass of a mole of an element is its molar mass.

B. Molar Mass Examples

-aluminum

-zinc

The Mass of a Mole of a Compound

-To calculate the molar mass of a compound, find the number of grams of each element in one mole of the compound. Then add the masses of the elements in the compound.

The Mass of a Mole of a Compound
Substitute the unit grams for atomic mass units. Thus 1 mol of SO₃ has a mass of 80.1 g.

Sample Problem 10.4 Finding the Molar Mass of a Compound

The decomposition of hydrogen peroxide (H_2O_2) provides sufficient energy to launch a rocket. What is the molar mass of hydrogen peroxide?

Calculate the molar mass of:

- $-1) C_2 H_3 Cl$ -2) NH₃ $-3) Ca(OH)_2$ $-3) Ca_3(PO_4)_2$

Bell Work —How many molecules are in 11.25 mol H₂O?

- -How many moles are in 5.38 x 10²⁴ formula units of NaCl?
- –How many atoms are in 0.707 mole of silicon?

-How many moles are in 3.45 x 10²³ molecules of CO₂?

10.1 Section Quiz.

- -1. Three common ways of measuring the amount of something are by count, by mass, and
 - a) by temperature.
 - b) by volume.
 - c) by area.
 - d) by density.

10.1 Section Quiz.

- -2. A mole of hydrogen gas, H₂(g), contains 6.02 x 10²³
 - a) molecules.
 - b) atoms.
 - c) amu. d) grams.

10.1 Section Quiz.

- 3. The atomic mass of fluorine is
 19.0 amu, so the molar mass is

a) 19.0 amu.

b) 19.0 g.

c) 6.02×10^{23} amu.

d) 6.02 x 10²³ g.

10.1 Section Quiz. -4. Calculate the molar mass of ammonium nitrate. a) 45.02 g b) 80.05 g c) 60.06 g d) 48.05 g

10.2 Mole-Mass and Mole-Volume Relationships

ATE

The Mole-Mass Relationship Use the molar mass of an element or compound to convert between the mass of a substance and the moles of a substance.

mass (grams) = number of moles $\times \frac{\text{mass}(\text{grams})}{1 \text{ mole}}$

moles = mass (grams) $\times \frac{1 \text{ mole}}{\text{mass (grams)}}$

Sample Problem 10.5

Converting Moles to Mass

The aluminum satellite dishes in Figure 10.8 are resistant to corrosion because the aluminum reacts with oxygen in the air to form a coating of aluminum oxide (Al_2O_3). This tough, resistant coating prevents any further corrosion. What is the mass of 9.45 mol of aluminum oxide?

Practice

- What is the mass of:
 - -A) 2.86 mol CaCO₃
 -B) 1.48 mol potassium oxide
 - -C) 4.85 mol HC₂H₃O₂

Sample Problem 10.6

Converting Mass to Moles

When iron is exposed to air, it corrodes to form red-brown rust. Rust is iron(III) oxide (Fe_2O_3). How many moles of iron(III) oxide are contained in 92.2 g of pure Fe_2O_3 ?

for Sample Problem 10.6 **18.** Find the number of moles in 3.70×10^{-1} g of boron.

Practice • How many moles are in: -A) 1.56 g $C_{10}H_6O_3$ –B) 7.55 g H₂CO -C) 22.6 g AgNO3 -D) 6.50 g tetraphosphorus decoxide

Practice: Mass to Particles

- -1) How many water molecules are in 10.0g?
- -2) How many molecules are in 135 g Teflon (C₂F₄)?
- -3) How many molecules are in a 5 lb bag of sugar (C12H22O11)?

Mole Relationships from a chemical formula

• Aluminum oxide, often called alumina, is the principle raw material for the production of aluminum. Alumina occurs in the minerals corundum and bauxite. Determine the moles of aluminum ions (AI^{3+}) in 1.25 mol of $A|_2O_3.$

Practice

- How many moles of oxygen atoms are present in 5.00 mol of diphosphorus pentoxide?
- Ethanol (C₂H₅OH) is often blended with gasoline. A sample of ethanol has a mass of 45.6 g. How many hydrogen atoms are present?
- A sample of aluminum chloride has a mass of 35.6 g. How many chloride ions
 The present?
The pain reliever Ibuprofen has the chemical formula C₁₃H₁₈O₂. If the tables in a bottle contain 33 g of ibuprofen, what mass of carbon is present?

The Mole-Volume Relationship

 Avogadro's hypothesis states that equal volumes of gases at the same temperature and pressure contain equal numbers of particles.

The Mole-Volume Relationship

- The volume of a gas varies with temperature and pressure. Because of these variations, the volume of a gas is usually measured at a standard temperature and pressure.
- Standard temperature and pressure (STP) means a temperature of 0°C and a pressure of 101.3 kPa, or 1 atmosphere (atm).

The Mole-Volume Relationship •At STP, 1 mol or, 6.02 × 10²³ representative particles, of any gas occupies a volume of 22.4 L. -The quantity 22.4 L is called the molar volume of a gas.

One Mole 22.4

The Mole-Volume Relationship

Calculating Volume at STP

volume of gas = moles of gas $\times \frac{22.4 \text{ L}}{1 \text{ mol}}$

Calculating the Volume of a Gas at STP

Sulfur dioxide (SO₂) is a gas produced by burning coal. It is an air pollutant and one of the causes of acid rain. Determine the volume, in liters, of 0.60 mol SO₂ gas at STP.

More Moles

- 1)How many Liters are in 0.25 mol oxygen gas?
- 2) How many grams are in 3.25 Liters of carbon dioxide gas?
- 3) How many liters are in 8.76 grams of SO₃?

The Mole-Volume Relationship

Calculating Molar Mass from Density

Calculating the Molar Mass of a Gas at STP

The density of a gaseous compound containing carbon and oxygen is found to be 1.964 g/L at STP. What is the molar mass of the compound?

10.2 Section Quiz.

- -1. Calculate the mass in grams
 of a sample containing 1.85 x
 10³⁴ molecules of water.
 - a) 3.07 x 10¹⁰ g
 - b) 5.53 x 10¹¹ g
- c) 188 g d) 8.46 x 10³ g

10.2 Section Quiz. -3. What is the volume of 0.35 mol of oxygen gas at STP? a) 32 L b) 64 L c) 7.8 L d) 16 L

10.3 Percent Composition and Chemical Formulas

ane

The Percent Composition of a Compound -The percent by mass of an element in a compound is the number of grams of the element divided by the mass in grams of the compound, multiplied by 100%. K₂CrO₄ K₂Cr₂O₇ 26.8% Cr 35.4% Cr 32.9% 0 38.1% O 40.3% K 26.5% K Potassium chromate, K₂CrO₄ Potassium dichromate, K₂Cr₂O₇

The Percent Composition of a Compound

Percent Composition from Mass Data

 The relative amounts of the elements in a compound are expressed as the percent composition or the percent by mass of each element in the compound.

% mass of element = $\frac{\text{mass of element}}{\text{mass of compound}} \times 100\%$

Calculating Percent Composition from Mass Data

When a 13.60-g sample of a compound containing only magnesium and oxygen is decomposed, 5.40 g of oxygen is obtained. What is the percent composition of this compound?

Calculating Percent Composition from a Formula

Propane (C_3H_8) , the fuel commonly used in gas grills, is one of the compounds obtained from petroleum. Calculate the percent composition of propane.

35. Calculate the percent nitrogen in these common fertilizers. a. NH₃ b. NH₄NO₃

- Calculate percent composition of:
 - $-A) C_2 H_5 OH (ethanol)$
 - -B) sulfuric acid (H₂SO₄)
 - -C) C₃H₇OH (isopropyl alcohol) -D) C₁₄H₂₀N₂SO₄ (penicillin)

Empirical Formulas —The empirical formula gives the lowest whole-number ratio of the atoms of the elements in a compound.

- Empirical Formulas
 Ethyne (C₂H₂) is a gas used in welder's torches. Styrene (C₈H₈) is used in making polystyrene.
- These two compounds of carbon have the same empirical formula (CH) but different molecular formulas.

Write empirical formulas for:

- 1) C₅H₁₀O₅
- 2) C₆H₁₂O₂
- 3) C₁₂H₁₇ON
- 4) C₆H₆

Determining the Empirical Formula of a Compound

A compound is analyzed and found to contain 25.9% nitrogen and 74.1% oxygen. What is the empirical formula of the compound?

for Sample Problem 10.11 **37.** 1,6-diaminohexane is used to make nylon. What is the empirical formula of this compound if it is 62.1% C, 13.8% H, and 24.1% N?

A sample contains 3.161 g of phosphorus, 0.3086 g of hydrogen and 6.531 g of oxygen. Determine the empirical formula.

A sample of Nylon is 63.68% carbon, 12.38% nitrogen, 9.80% hydrogen, and 14.14% oxygen. Determine the empirical formula.

- Find the empirical formula of a compound found to contain 26.56% potassium, 35.41% chromium, and the remainder oxygen.
- A compound containing sodium, chlorine and oxygen is 25.42% sodium by mass. A 3.25 sample gives 4.33 x 10²² atoms of oxygen. What is the empirical formula?

Molecular Formulas -The molecular formula of a compound is either the same as its experimentally determined empirical formula, or it is a simple whole-number multiple of its empirical formula.

Finding the Molecular Formula of a Compound

Calculate the molecular formula of a compound whose molar mass is 60.0 g/mol and empirical formula is CH_4N .

Example

-A white powder is analyzed and has an empirical formula of P_2O_5 . It has a molar mass of 283.88 g/mol. What is the molecular formula?

-Caffeine is 49.47% carbon, 5.191% hydrogen, 28.6% nitrogen, and 16.48% oxygen and has a molar mass of 194 g/mol. What is the molecular formula?

Practice

-A gasoline additive to prevent knocking is 71.65% Cl, 24.27% C, and 4.07% H. The molar mass is 98.96 g. Determine the empirical and molecular formulas.

10.3 Section Quiz. -1. Calculate the percent by mass of carbon in cadaverine, $C_5H_{14}N_2$, a compound present in rotting meat. a) 67.4% C b) 58.8% C c) 51.7% C d) 68.2% C

10.3 Section Quiz. -2. Which of the following is NOT an empirical formula? a) NO_2 b) H_2N c) CH d) $C_{3}H_{6}$

10.3 Section Quiz.

3. Determine the molecular formula of a compound that contains 40.0 percent C, 6.71 percent H, and 53.29 percent O and has a molar mass of 60.05 g.

a) $C_2H_4O_2$ b) CH_2O

c) C_2H_3O

d) C_2H_4O