AP CHEMISTRY CHAPTER 5 MULTIPLE CHOICE

No calculator

(Questions 1-16) Choose the letter of the statement that best answers the question or completes the statement.

Ouesti	ons 1-4	refer to the following orbital diagrams
	A.	1s <u>†</u> 2s <u>†</u>
	B.	1s ★★ 2s ★ L
	C.	[Kr] 5s 🛧 4d 🛧 🔭
	D.	[Ne] 3s <u>↑</u> 4 <u>↑</u> <u>↑</u> <i>P</i>
	E.	1s + 2s + 2p + 4 + 4 + 4
<u>E</u>		The least reactive element is represented by:
		The transition element is represented by:
<u>B</u>	3.	The most chemically reactive element is represented by:
<u> </u>	4.	The element in an excited state is represented by:
2	5.	The ground-state configuration of Fe ²⁺ is which of the following?
4	3.	A. $1s^22s^22p^63s^23p^63d^54s^1$
		The ground-state configuration of Fe 1s which of the following? A. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ¹ B. 1s ² 2s ² 2p ⁶ 3s ² 3d ⁶ 1s ² 2s ² 2p ⁶ 3s ² 3n ⁶ 3d ⁵⁶ 4s ²
		$D = 1s^2 2s^2 7n^6 3s^2 3n^6 3d^8 4s^2$
		E. $1s^22s^22p^63s^23p^63d^44s^2$ Which of the following contains only atoms that are diamagnetic in their ground state?
h services		110
	6.	Which of the following contains only atoms that are diamagnetic in their
		ground state?
		A. Kr, Ca, and P
		B. Cl, Mg, and Cd
		C. Ar, K, and Ba
		D. He, Sr, and C
		E. Ne, Be, and Zn
X	7.	A valence electron from an arsenic atom might have an electron with the
		following set of quantum numbers in the ground state?
		A. $n = 4$; $\ell = 1$, $m_1 = 0$; $m_2 = +\frac{1}{2}$
	-	B. $n = 4$; $\ell = 1$, $m_1 = 2$; $m_2 = -\frac{1}{2}$
		C. $n = 3$; $\ell = 1$, $m_1 = 0$; $m_a = +\frac{1}{2}$
		D. $n = 5$; $\ell = 1$, $m_1 = -1$; $m_2 = -\frac{1}{2}$
		E. $n = 4$; $\ell = 2$, $m_1 = +1$; $m_n = +\frac{1}{2}$

(1)		wing ground-state electron configurations for questions 8-11):
	A.	$1s^21p^62s^22p^3$
	B.	1s 1p 2s 2p 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ 5s ² 4d ¹ 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 1s ² 2s ² 2p ⁵ 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶
	C.	18 28 2p 38 3p 30 -
•	D.	18"28"2p" 1-22-22-62-22-64-22-104-6
	В.	18 28 2p 38 3p 48 30 4p
_	<u>D</u> 8.	The electron configuration of a halogen is:
-	<u>B</u> 9.	This is a possible configuration for a transition metal atom.
	10.	This electron configuration is not possible. No $\sqrt{\rho}$
_	11.	This is a possible configuration of a transition metal ion.
C	The followin	g answers are to be used for questions 12-15):
`	A .	Pauli exclusion principle
	В.	electron shielding
	C.	the wave properties of matter
	D.	Heisenberg uncertainty principle
	E.	Hund's rule
<u>e.</u>	12.	The exact position of an electron is not known.
-	E 13.	Oxygen atoms, in their ground state, are paramagnetic.
_	<u>A</u> 14.	An atomic orbital can hold no more than two electrons.
-	15.	The reason the 4s orbital fills before the 3d. = Anthony
-	16.	In the ground state the highest-energy electron of a rubidium atom might have which of the following sets of quantum numbers?
•		A. $n = 5$; $\ell = 0$, $m_1 = 1$; $m_a = + \frac{1}{2}$
		B. $n = 5$; $l = 1$, $m_l = 1$; $m_a = +\frac{1}{2}$
		C. $n = 4$; $\ell = 0$, $m_1 = 0$; $m_2 = +\frac{1}{2}$
		D. $n = 5$; $\ell = 0$, $m_i = 0$; $m_a = +\frac{1}{2}$
		E. $n = 6$; $\ell = 0$, $m_1 = 0$; $m_2 = +\frac{1}{2}$
<u>:</u>		
		·

A.P. Chemistry

Chapter 7 Practice Questions

Answer the following questions.

- 1. The bond energy of fluorine is 159 kJ/mol.
 - i. Determine the energy, in J, of a photon of light needed to break a F–F bond.
 - ii. Determine the frequency of this photon in s^{-1} .
 - iii. Determine the wavelength of this photon in nanometers.
- 2. Determine the wavelength, in m, of an alpha particle traveling at 5.2×10^7 m/s. An alpha particle has a mass of 6.6×10^{-24} g. (Use DeBroglie's wavelength equation.)
- 3. Barium imparts a characteristic green color to a flame. The wavelength of this light is 551 nm. Determine the energy involved in kJ/mol.
- 4. The average atomic mass of naturally occurring neon is 20.18 amu. There are two common isotopes of naturally occurring neon as indicated in the table below.

Isotope	Mass (amu)	
Ne-20	19.99	
Ne-22	21.99	

- a. Using the information above, calculate the percent abundance of each isotope.
- b. Calculate the number of Ne-22 atoms in a 12.55 g sample of naturally occurring neon.

- 5. A major line in the emission spectrum of neon corresponds to a frequency of 4.34×10^{14} s⁻¹.
 - a. Calculate the wavelength, in nanometers, of light that corresponds to this line.
- 6. In the upper atmosphere, ozone molecules decompose as they absorb ultraviolet (UV) radiation, as shown by the equation below. Ozone serves to block harmful ultraviolet radiation that comes from the sun.

$$O_3(g) \xrightarrow{UV} O_2(g) + O(g)$$

A molecule of $O_3(g)$ absorbs a photon with a frequency of $1.00 \times 10^{15} \text{ s}^{-1}$.

- a. How much energy, in joules, does the O₃(g) molecule absorb per photon?
- b. The minimum energy needed to break an oxygen-oxygen bond in ozone is 387 kJ mol⁻¹. Does a photon with a frequency of 1.00 x 10¹⁵ s⁻¹ have enough energy to break this bond? Support your answer with a calculation.

