Section 2: Characteristics of Waves

Preview

- Key Ideas
- Bellringer
- Wave Properties
- Wave Speed
- Math Skills
- The Doppler Effect

Next

Back

Preview n

Main n

Preview n

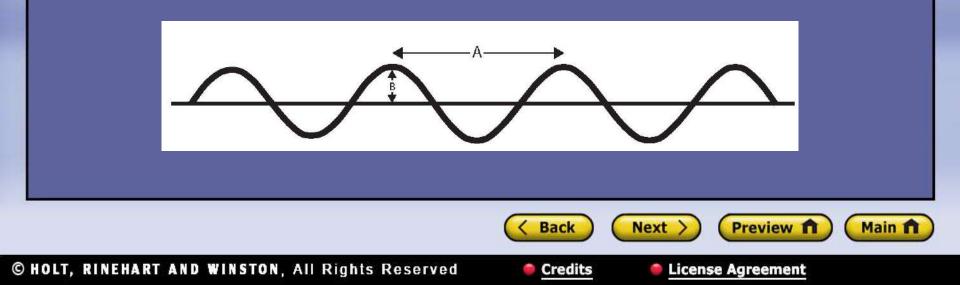
License Agreement

Main 1

Key Ideas

What are some ways to measure and compare waves?

How can you calculate the speed of a wave?


Why does the pitch of an ambulance siren change as the ambulance rushes past you?

Credits

Bellringer

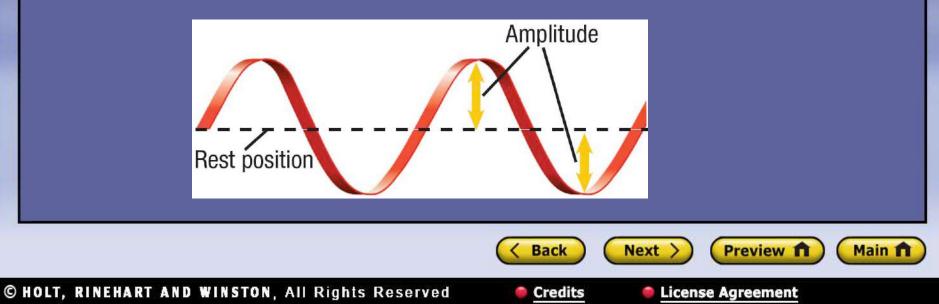
- In the diagram, A is the distance from a point on one wave to an identical point on the next wave. What might this distance be called?
- In the diagram, B is the *amplitude* of a wave. What do you think this is a measure of?
- Twenty waves pass by a point in a certain amount of time. Would this be a measure of a wave's speed or frequency?

Wave Properties

What are some ways to measure and compare waves?

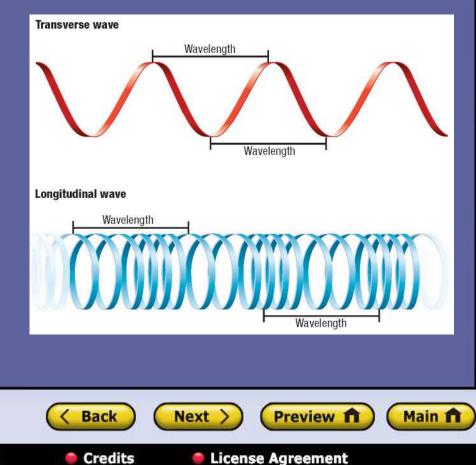
Amplitude and wavelength are measurements of distance. Period and frequency are measurements based on time.

Next


Back

Preview n

Wave Properties, continued


- Amplitude measures the amount of particle vibration.
 - amplitude: the maximum distance that the particles of a wave's medium vibrate from their rest position
 - for a transverse wave, measured from the rest position to the crest or the trough
 - expressed in the SI unit meters (m)

Wave Properties, *continued*

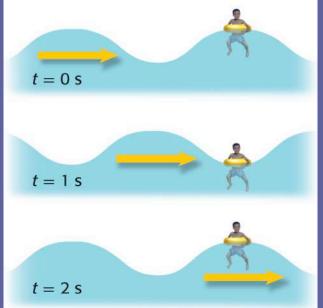
Wavelength is the distance between two equivalent parts of a wave.

wavelength: the distance from any point on a wave to an identical point on the next wave for a transverse wave, measured from crest to crest or trough to trough represented by the symbol λ expressed in the SI unit meters (m)

Wave Properties, continued

- Amplitude and wavelength tell you about energy.
 - larger amplitude = more energy
 - shorter wavelength = more energy

Wave Properties, continued

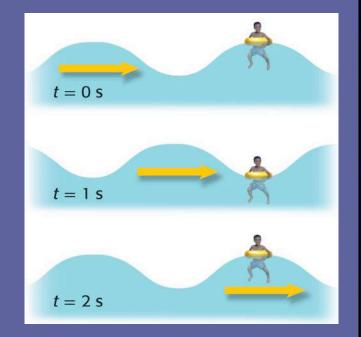

• The period is a measurement of the time it takes for a wave to pass a given point.

Back

Credits

Next

• period: in physics, the time that it takes a complete cycle or wave oscillation to occur represented by the symbol Texpressed in the SI unit seconds (s) in the diagram, T = 2 s


Preview n

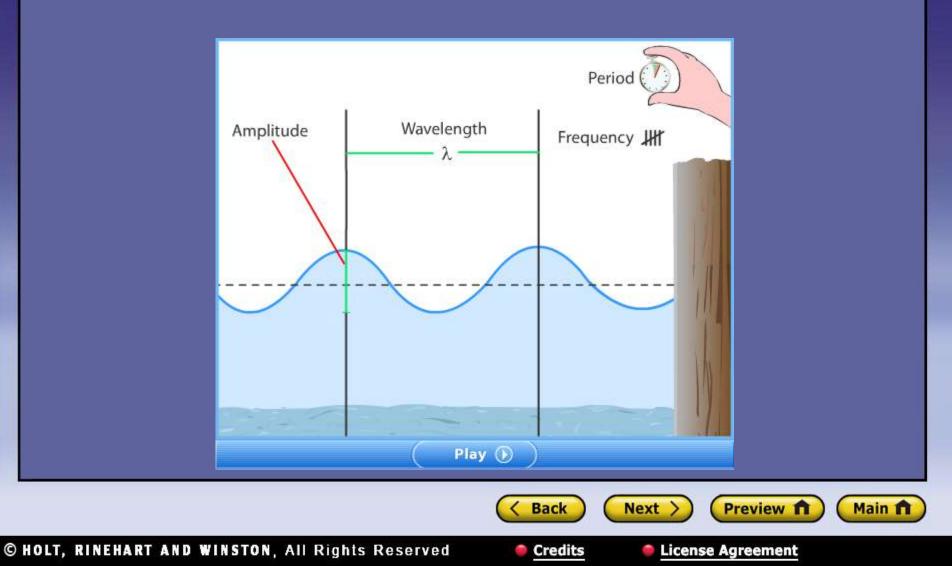
License Agreement

Wave Properties, continued

• Frequency is a measurement of the vibration rate.

• frequency: the number of cycles or vibrations per unit of time; also the number of waves produced in a given amount of time represented by the symbol fexpressed in the SI unit hertz (Hz), which equals 1/s in the diagram, f = 0.5 Hz

Preview n


License Agreement

Next

Back

Credits

Visual Concept: Characteristics of a Wave

Preview n

License Agreement

Main n

Wave Properties, continued

© HOLT, RINEHART AND WINSTON, All Rights Reserved

- The frequency and period of a wave are related.
 - The frequency is the inverse of the period.

frequency =
$$\frac{1}{\text{period}}$$
, or $f = 1/T$

Back

Credits

Next

Main 1

Wave Speed

How can you calculate the speed of a wave?

The speed of a wave is equal to wavelength divided by period, or to frequency multiplied by wavelength.

Wave Speed, continued

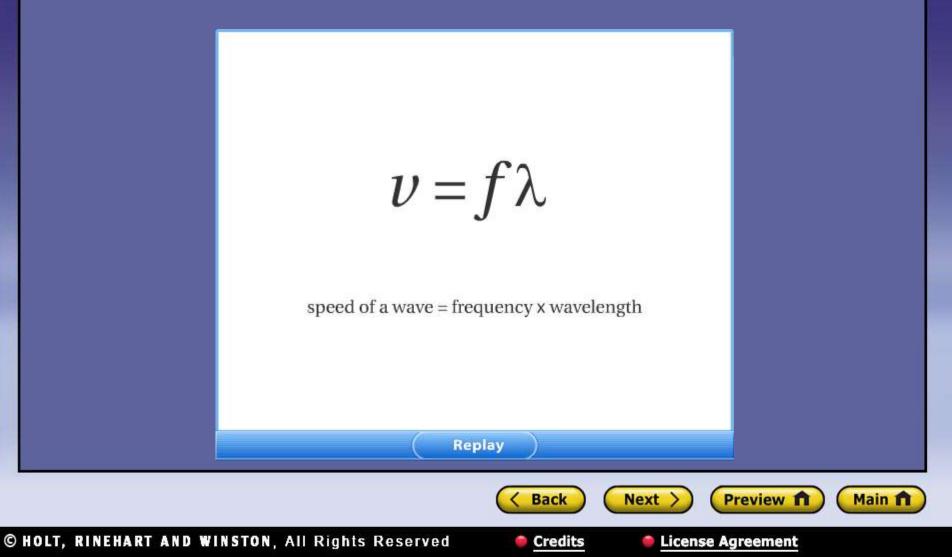
Wave speed equals wavelength divided by period.
speed = distance/time

wave speed = wavelength/period, or v=

• Wave speed equals frequency times wavelength. frequency = $\frac{1}{T}$

wave speed = frequency \times wavelength, or $v = f \times I$

Back


Next

Preview n

Section 2

Visual Concept: Equation for the Speed of a Wave

Preview n

License Agreement

Main 1

Math Skills

Wave Speed

The string of a piano that produces the note middle C vibrates with a frequency of 262 Hz. If the sound waves produced by this string have a wavelength in air of 1.30 m, what is the speed of the sound waves?

Back

Credits

Next

 List the given and unknown values.
Given: frequency, f = 262 Hz wavelength, λ = 1.30 m
Unknown: wave speed, v = ? m/s

© HOLT, RINEHART AND WINSTON, All Rights Reserved

Math Skills, continued

- Write the equation for wave speed. $v = f \times \lambda$
- Insert the known values into the equation, and solve.
- *v* = 262 Hz × 1.30 m

v = 341 m/s

© HOLT, RINEHART AND WINSTON, All Rights Reserved

Credits

Back

Next

Preview n

Preview n

License Agreement

Main 1

Wave Speed, continued

- The speed of a wave depends on the medium.
 - In general, wave speed is greatest in solids and least in gases.
 - In a given medium, the speed of waves is constant.

Credits

- Kinetic theory explains differences in wave speed.
- Light has a finite speed.
 - the speed of light (c) = 3.00×10^8 m/s
 - for electromagnetic waves, $c = f \times \lambda$

Preview n

License Agreement

Next

Back

Credits

Main 1

The Doppler Effect

> Why does the pitch of an ambulance siren change as the ambulance rushes past you?

Motion between the source of waves and the observer creates a change in observed frequency.

Preview n

License Agreement

Main 1

The Doppler Effect, continued

- Pitch is determined by the frequency of sound waves.
 - The *pitch* of a sound (how high or low it is) is determined by the frequency at which sound waves strike the eardrum in your ear.
 - A higher-pitched sound is caused by sound waves of higher frequency.

Credits

Preview n

License Agreement

Next

Credits

Main 1

The Doppler Effect, continued

- Frequency changes when the source of waves is moving.
 - Doppler effect: an observed change in the frequency of a wave when the source or observer is moving
 - The Doppler effect occurs for many types of waves, including sound waves and light waves.

Visual Concept: Doppler Effect and Sound

Credits

License Agreement