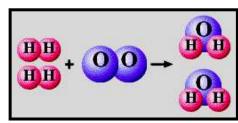
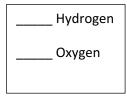
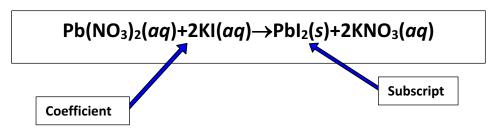

Chapter 7: Chemical Reaction Guided Notes


Chemical Changes in Matter I.


- A. Chemical Reaction
 - 1. A change in which one or more substances are converted to ______ substances.


- B. Law of Conservation of Matter
 - 1. In a chemical reaction, matter is not ______ or _____
 - 2. Atoms can only be ______.
 - 3. Discovered by Lavoisier.

C. Chemical Equations

- 1. # of units of each substance.
- 2. Individual atom = *atom*

 $2Mg \Rightarrow 2$ of magnesium

3. Covalent substance = *molecule*

 $3CO_2 \Rightarrow 3$ ______ of carbon dioxide

4. Ionic substance = *unit*

 $4MgO \Rightarrow 4$ _____ of magnesium oxide

SYMBOL	MEANING
\rightarrow	produces, forms
+	plus, and
(s)	solid
(l)	liquid
(g)	gas
(aq)	aqueous (solid dissolved in water)
$\xrightarrow{\Delta}$	the reactants are heated

II. Balancing Equations

- A. Steps for Balancing Equations
 - 1. Write the ______ equation.
 - 2. _____ atoms on each side.
 - 3. Add _____ to make numbers (#) _____.

Coefficient × Subscript = # of Atoms

- 4. _____ coefficients to lowest possible ratio, if necessary.
- 5. Double check atom ______!!!

B. Balancing Example:

Aluminum and copper (II) chloride form copper and aluminum chloride.

Balancing Equations Practice Problems

1)
$$HgO \rightarrow Hg + O_2$$

2)
$$N_2 + H_2 \rightarrow NH_3$$

3)
$$KCIO_3 \rightarrow KCI + O_2$$

4)
$$KBr + Cl_2 \rightarrow KCl + Br_2$$

5)
$$CO + O_2 \rightarrow CO_2$$

- C. Rates of Change
 - 1. To increase the rate(speed) of a reaction (in most cases):
 - Increase _____
 - Increase _____ area
 - _____ solutions
 - _____ pressure
 - Massive, bulky molecules react slower.

		D.	Cat	talysts		
			1.	A <i>catalyst</i> is a substance t	hat up a chemical reaction without be	ing
				permanently changed itse	lf.	
			2.	They are	reactants or products.	
			3.	are	proteins that are catalysts for chemical reactions in	
				things.		
		E.	Inh	nibitors		
			1.	Substances that are used	to with one of the reactants to preven	t certain
				reactions from occurring.	·	
			2.	Examples are:	& lemon juice on cut fru	it to keep it
				from turning brown.		·
		F.	Eq	uilibrium Systems		
				Some reactions are		
				r		
					ving $→$, equals the reaction moving $←***$	
III.		Tva	205	of Reactions		
					nemical Reactions. These are,,,	
					, and	<i>'</i>
				,	, and	
A.	Syı	nthe	sis			
	•			of tv	vo (2) or more substances to form a compound.	
	2. Only <u>one (1)</u> forms.					
					A + B → AB	
					$2P + 3Br_2 \rightarrow 2PBr_3$	
	De	com	posi	ition		
	1.	A c	omp	pound	into two (2) or more simpler substances.	
	2.	On	ly <u>o</u> ı	<u>ne</u> (1)	·	
					AB → A + B	
					$2H_2O_2 \rightarrow 2H_2O + O_2$	
	Sin	ıgle I	Repl	acement		
	1.	On	e el	ement	another in a compound.	
			•	Metal replaces metal (+)		
			•	Nonmetal replaces nonme	etal (-)	
				Λ	- BC → AC + B	
				<u>A</u> 7	DC	

 $Zn + 2HCl \rightarrow ZnCl_2 + H_2$

_		_	
D.	Doubl	e Rep	lacement

- 1. lons in two compounds "______" partners.
- 2. ______(+) of one compound combines with ______(-) of the other.

$$AB + CD \longrightarrow AD + CB$$

 $2KOH + CuSO_4 \rightarrow K_2SO_4 + Cu(OH)_2$

E. Combustion

- 1. Uses _______(O₂) as a reactant.
- 2. Produces _____
- 3. The products usually include _______ (CO₂).

$$AB + O_2 \longrightarrow A + BO_2$$

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

IV. Energy & Chemical Reactions

A. Energy Changes

- 1. During a chemical reaction...
 - energy is used to ______bonds.
 - energy is ______ when new bonds are formed.

B. Endothermic Reaction

- 1. Reaction that _____ energy.
- 2. Energy required to ______ old bonds outweighs energy released by making new bonds.

$$2Al_2O_3 + energy \rightarrow 4Al + 3O_2$$

3. Process used to obtain aluminum from aluminum ore.

C. Exothermic Reaction

- 1. Reaction that _____ energy.
- 2. Energy ______ by making new bounds outweighs energy required to break old bonds.

$$H_2(I) + O_2(I) \rightarrow H_2O(q) + energy$$

3. Reaction that powers the space shuttle lift-off.

A.	Mole The SI base unit that describes how many tiny particles make up a fixed amount of a								
В.	Avogadro's Constant								
	1 x 10 ²³ = the number of particles in exactly one mol () of a substance.								
	2. This number is used to calculate the of a substance.								
C.	Molar Mass								
	The molar mass is used to the number of particles of each substance in a chemical reaction.								

٧.

Moles