Ch. 8 Solutions, Acids, & Bases

I. How Solutions Form

- Definitions
- Types of Solutions
- Dissolving
- Rate of Dissolving

A. Definitions

Solution – a mixture that has the same composition throughout the mixture; a homogeneous mixture

Solute - substance being dissolved (in lesser quantity)

Solvent – what the solute is dissolved in (in greater quantity)

A. Definitions

Solute - KMnO₄

Solvent - H₂O

Solutions

- Solution a mixture that has the same composition throughout the mix.
- Remember the difference between a mixture and a compound.
 - Compounds have a fixed composition throughout.
 - Mixtures can have a variable composition throughout.

A. Definitions

◆ Solubility – The maximum amount of solute that can be dissolved in the solvent at a given temperature.

B. Types of Solutions

◆ Saturated solutions – maximum amount of solute at a given temperature.

◆ Unsaturated solutions — less than the maximum amount of solute at a given temperature.

◆ Supersaturated solutions – more than the maximum amount of solute at a given temperature;

B. Types of Solutions

UNSATURATED SOLUTION more solute

more solute dissolves

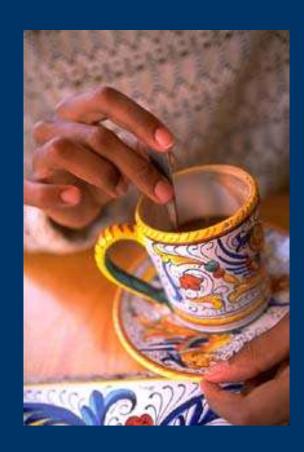
SATURATED SOLUTION

no more solute dissolves

concentration

SUPERSATURATED SOLUTION

becomes unstable, crystals form


C. Dissolving

Solvation

- occurs at the surface of the solute
- solvent particles surround solute particles (+/- attraction)
- solute particles are pulled into solution

D. Rate of Dissolving

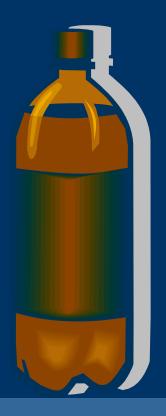
- Solids dissolve faster...
 - more stirring
 - small particle size (increased surface area)
 - high temperature

Rate of Dissolving

To increase rate of dissolving of SOLIDS:

Heat it

D. Rate of Dissolving


- Gases dissolve faster...
 - no shaking or stirring
 - high pressure
 - low temperature

To make a gas dissolve more quickly in a liquid:

Cool it

 Increase the pressure of the gas

Ch. 8 Solutions, Acids, & Bases

II. Concentration & Solubility

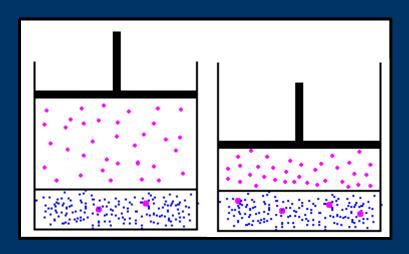
A. Concentration

- **♦**% by Volume
 - usually liquid in liquid
 - <u>Ex</u>: 10% juice = 10mL juice + 90mL water

- % by Mass
 - usually solid in liquid
 - Ex: 20% NaCl = 20g NaCl + 80g water

A. Concentration

- Concentrated solution
 - large amount of solute
- Dilute solution
 - small amount of solute


B. Solubility

Solubility

- maximum grams of solute that will dissolve in 100 g of solvent at a given temperature
- varies with temperature
- based on a saturated solution

B. Solubility

- Solids are more soluble at...
 - high temperatures
 - Gases are more soluble at...

- low temperatures
- high pressures (Henry's Law)

C. Solubility Charts

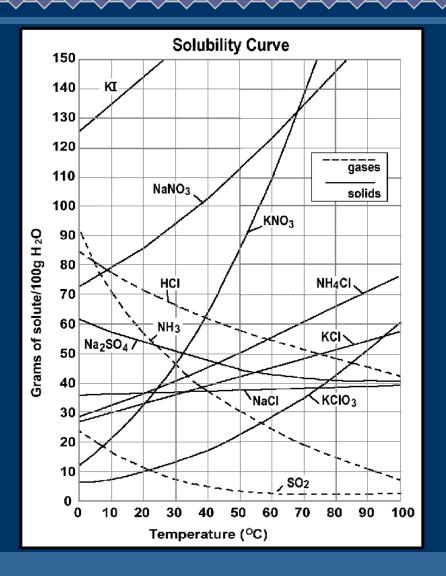
Reading Solubility Charts

- If the number in the problem is EQUAL to the value on the chart the solution is considered SATURATED
- If the number in the problem is LESS than the value on the chart the solution is considered UNSATURATED
- If the number in the problem is MORE than the value on the chart the solution is considered SUPER SATURATED

C. Solubility Charts

Solubility of Compounds in g/100g of Water at various Temperatures

Compound	0 ° C	20° C	60° C	100° C
Ammonium chloride	29.4	37.2	55.3	77.3
Copper(II) sulfate	23.1	32.0	61.8	114
Lead(II)chloride	0.67	1.0	1.94	3.2
Potassium bromide	53.6	65.3	85.5	104
Sodium chlorate	79.6	95.9	137	204


Answer Questions on your paper

Chart

- 1) How would you classify a solution of 65.3g of potassium bromide at 20°C? **Saturated**
- 2) How would you classify a solution of 65.3g of potassium bromide at 60°C? Unsaturated
- 3) How would you classify a solution of 65.3g of potassium bromide at 0°C? **Supersaturated**
- 4) How would you classify a solution of 37g of ammonium chloride at 20°C? **Unsaturated**
- 5) How would you classify a solution of 2.5 g of lead (II) chloride at 20°C? **Supersaturated**

D. Solubility Graphs

- Solubility Curve
 - shows the dependence of solubility on temperature

- Graph
 - 6) How would you classify a solution of 80g of HCl at 20°C? Supersaturated
 - 7) How would you classify a solution of 30g of KNO₃ at 20°C? Unsaturated
 - 8) How would you classify a solution of 39g of NaCl at 100°C? Saturated
 - 9) How would you classify a solution of 80g of NaNO₃ at 30°C? <u>Unsaturated</u>
 - 10)How would you classify a solution of 40g of KClO₃ at 80°C? <u>Unsaturated</u>

- 11)How many grams of solute would you need to form a saturated solution of NH₄Cl at 50°C? 50 g
- 12)How would you classify a solution of 20g of SO₂ at 0°C? Unsaturated
- 13)How much KI would you need to form a saturated solution at 10°C? 135 g
- 14)Which solid decreases in solubility as the temperature increases? Na₂SO₄