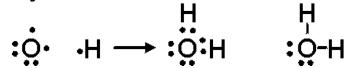
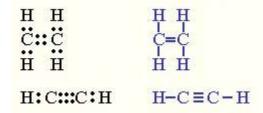
## Ch 8: Covalent Bonding


SC3e: Compare and contrast types of chemical bonds (i.e. ionic, covalent)

8.1 Molecular Compounds


- <u>Covalent Bond</u> are atoms held together by sharing electrons.
- <u>Molecule</u> is a neutral group of atoms joined together by covalent bonds.
- <u>Diatomic molecule</u> is a molecule consisting of two atoms
- <u>Molecular compound</u> is a compound composed of molecules.
- Molecular compounds tent to have relatively lower melting and boiling points that ionic compounds
- Most are gases or liquids at room temperature, and most molecular compounds are composed of two or more nonmetals.
- Molecular formula is the chemical formula of a molecular compound
- A molecular formula shows how many atoms of each element a molecule contains

8.2 The nature of Covalent Bonding

- In covalent bonds, electrons sharing usually occur so that atoms attain the electron configuration of noble gases.
- In covalent bonds elements usually acquire a total of eight electrons (an octet) by sharing electrons.
- <u>Single covalent bond</u> is when atoms are held together by sharing a pair of electrons
- An electron dot structure such as H:H represents the shared pair of electrons of the covalent bond by two dots.
- <u>Structural formula</u> represents covalent bonds by dashes and shows the arrangement of covalently bonded atoms.
- <u>Unshared pair</u> is a pair of valence electrons that is not shared between the atoms



- The oxygen atom has two unshared pair of electrons and two single covalent bonds.
- Atoms form double or triple covalent bonds if they can attain a noble gas structure by sharing two pairs or three pairs of electrons.
- <u>Double covalent bond</u> is a bond that involves two shared pairs of electrons
- <u>Triple covalent bond</u> is a bond that involves three shared pairs of electrons



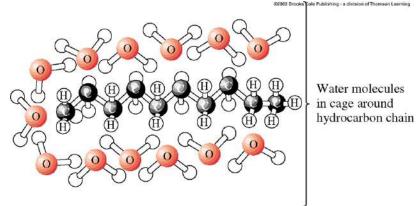
Steps for Drawing Lewis Structures

- 1. Decide on a central atom. Generally the LEAST electronegative atom is central atom. Hydrogen can NEVER be central atom because it can only form one bond.
- 2. Add up the number of valance electrons for ALL elements in compound
- 3. Form a single bond between the central atom and each of the other atoms
- 4. Add lone pair to elements to complete the octet (remember Hydrogen only want 2 electrons)

- 5. Check each element to make sure they have access to 8 electrons (H=2). Ask are they happy?
- 6. Add up the number of electrons in drawing [count dots + 2(# of lines)] and see if this number match the number of valance electrons in step 2
  - If you have too many form double or triple bonds as needed
  - If you have too few than you made a mistake in your drawing.

## **Diatomic Molecules**

- There are 7 elements that do not exist in nature as a single atom; they always appear as pairs
- When atoms turn into ions, this NO LONGER HAPPENS! They can form bonds as single atoms.
  - Hydrogen H<sub>2</sub>
  - Nitrogen N<sub>2</sub>
  - Oxygen O<sub>2</sub>
  - Fluorine F<sub>2</sub>
  - Chlorine Cl<sub>2</sub>
  - Bromine Br<sub>2</sub>
  - Iodine I<sub>2</sub>
- Remember: BrINClHOF
- Or remember the 7 elements in the shape of a 7 on the periodic table


8.4 Polar Bonds and Molecules

- <u>Nonpolar covalent bond (polar bond)</u> is when the bonding electrons are shared equally.
- ALL diatomic halogen molecules are nonpolar
- Polar covalent bond (polar bond) is when the bonding electrons are NOT shared equally
- The more electronegative atom attracts electrons more strongly and gains a slightly negative charge. The less electronegative atom has a slightly positive charge.
- When polar molecules are placed between oppositely charges plates they tend to become oriented with respected to the positive and negative plates.
- To determine if a bond is polar or nonpolar look at the difference in electronegativity values
  - 1. Nonpolar covalent is electronegativity difference range of 0.0 to 0.3
  - 2. Slightly (moderately) polar covalent is electronegativity difference range of 0.4 to 1.0
  - 3. Very polar covalent is electronegativity difference range of 1.0 to 1.6
  - 4. Ionic bonds is electronegativity difference range above 1.7 to 4.0

|   | IA<br>H               | П.              |                       |                        | Tab             | le of           | Elec                   | trone                  | egativ          | /ity V          | alue                | s               | TTLA                 | 1374                   | VA                    | VIA                    | VIIA                         |                  |
|---|-----------------------|-----------------|-----------------------|------------------------|-----------------|-----------------|------------------------|------------------------|-----------------|-----------------|---------------------|-----------------|----------------------|------------------------|-----------------------|------------------------|------------------------------|------------------|
|   | 2.1<br>3<br>Li<br>1.0 | 4<br>Be<br>1.5  | 1                     |                        |                 |                 |                        |                        |                 |                 |                     |                 | 5<br><b>B</b><br>2.0 | IVA<br>6<br>C<br>2.5   | VA<br>7<br>N<br>3.0   | 8<br>0<br>3.5          | VIIA<br>9<br><b>F</b><br>4.0 | 10<br>Ne         |
|   | 11<br>Na<br>0.9       | 12<br>Mg<br>1.2 | шв                    | IVB                    | VB              | VIB             | VIIB                   | _                      | -VIII           |                 | IB                  | IIB             | 13<br>Al<br>1.5      | 14<br>Si<br>1.8        | 15<br><b>P</b><br>2.1 | 16<br><b>S</b><br>2.5  | 17<br>Cl<br>3.0              | 18<br>Ar         |
|   | 19<br><b>K</b><br>0.8 | 20<br>Ca<br>1.0 | 21<br>Sc<br>1.3       | 22<br><b>Ti</b><br>1.5 | 23<br>V<br>1.6  | 24<br>Cr<br>1.6 | 25<br>Mn<br>1.5        | 26<br>Fe<br>1.8        | 27<br>Co<br>1.8 | 28<br>Ni<br>1.8 | 29<br>Cu<br>1.9     | 30<br>Zn<br>1.6 | 31<br>Ga<br>1.6      | 32<br>Ge<br>1.8        | 33<br>As<br>2.0       | 34<br>Se<br>2.4        | 35<br>Br<br>2.8              | 36<br><b>K</b> 1 |
|   | 37<br>Rb<br>0.8       | 38<br>Sr<br>1.0 | 39<br><b>Y</b><br>1.2 | 40<br>Zr<br>1.4        | 41<br>Nb<br>1.6 | 42<br>Mo<br>1.8 | 43<br><b>Tc</b><br>1.9 | 44<br><b>Ru</b><br>2.2 | 45<br>Rh<br>2.2 | 46<br>Pd<br>2.2 | 47<br>Ag<br>1.9     | 48<br>Cd<br>1.8 | 49<br>In<br>1.8      | 50<br>Sn<br>1.8        | 51<br>Sb<br>1.9       | 52<br>Te<br>2.1        | 53<br>I<br>2.5               | 54<br>Xe         |
|   | 55<br>Cs<br>0.7       | 56<br>Ba<br>0.9 | 57<br>La              | 72<br><b>Hf</b>        | 73<br><b>Ta</b> | 74<br>W         | 75<br><b>Re</b>        | 76<br>Os               | 77<br>Ir        | 78<br><b>Pt</b> | <sup>79</sup><br>Au | 80<br><b>Hg</b> | 81<br>Tl<br>1.8      | 82<br><b>Pb</b><br>1.9 | 83<br>Bi<br>1.9       | 84<br><b>Po</b><br>2.0 | 85<br>At<br>2.2              | 86<br><b>R</b> 1 |
| 0 | 87<br>Fr<br>0.7       | 88<br>Ra<br>0.9 | 89<br>Ac              | 104<br><b>Rf</b>       | 105<br>Db       | 106<br>Sg       | 107<br><b>Bh</b>       | 108<br>Hs              | 109<br>Mt       | 110             | 111                 | 112             |                      | 114                    |                       | 116                    |                              |                  |

| Lanthanides | <sup>58</sup><br>Ce | 59<br>Pr      | Nd | 61<br><b>Pm</b> | 62<br>Sm  | 63<br>Eu | 64<br>Gd | 65<br><b>Tb</b> | 66<br><b>D</b> v | 67<br><b>Ho</b> | Er        | 69<br><b>Tm</b> | 70<br><b>Yb</b> | <sup>71</sup><br>Lu |
|-------------|---------------------|---------------|----|-----------------|-----------|----------|----------|-----------------|------------------|-----------------|-----------|-----------------|-----------------|---------------------|
| Actinides   | <sup>90</sup>       | <sup>91</sup> | 92 | 93              | 94        | 95       | 96       | 97              | 98               | 99              | 100       | 101             | 102             | 103                 |
|             | Th                  | <b>Pa</b>     | U  | Np              | <b>Pu</b> | Am       | Cm       | Bk              | Cf               | Es              | <b>Fm</b> | <b>Md</b>       | No              | Lr                  |

- Differences in polarity can prevent different molecules from mixing
  - 1. Water is a polar molecule
  - 2. Oils are nonpolar molecules
  - 3. Oil and water don't mix because they are so different in polarity



5. Remember: "Like Dissolves Like." Polar dissolves Polar and Nonpolar dissolves Nonpolar

|  | Characteristic            | Ionic Bonds                                         | Covalent Bonds            |  |  |  |  |  |  |  |
|--|---------------------------|-----------------------------------------------------|---------------------------|--|--|--|--|--|--|--|
|  | Reason for forming        | Because atoms want to have full outer energy levels |                           |  |  |  |  |  |  |  |
|  | How they form             | Transferring electrons                              | Sharing electrons         |  |  |  |  |  |  |  |
|  | Strength of bond          | Very strong bond                                    | Weak bond                 |  |  |  |  |  |  |  |
|  | Melting/Boiling Points    | Very HIGH                                           | LOW                       |  |  |  |  |  |  |  |
|  | Phase at room temperature | Most are solids                                     | Most are liquids or gases |  |  |  |  |  |  |  |

Compare and contrast Ionic and Covalent bonds

4.