P. Sci. Unit 4 Energy

Energy and Work

Whenever work is done, energy is transformed or transferred to another system.

10/00/00

• Energy is the ability to do work.

 Remember – work is done only when an object moves.

 But - energy can be present in an object or a system when nothing is happening.

 However – it can only be observed when it is transferred from one object or system to another.

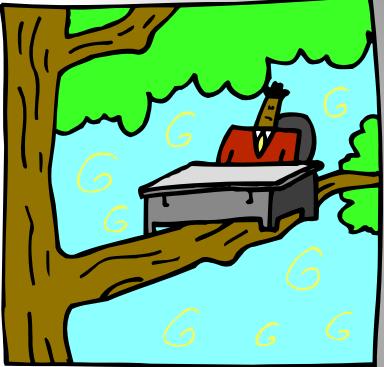
SI Unit of Energy

 Because the amount of energy transferred is measured by how much work is done – energy and work are expressed in the same unit.

Joules is unit of energy

Potential Energy AKA – Energy of Position

Potential Energy is energy that is Stored. You can't see it but you know it's

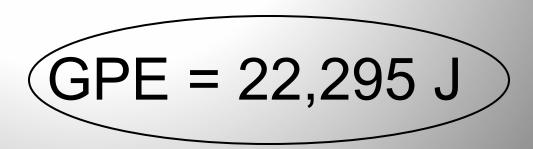

Types of Potential Energy

SAS

- Gravitational Potential Energy —Energy stored due to position (objects that are above Earth's surface).
- <u>Chemical Potential Energy</u> Energy stored in chemical bonds such as food or fuel.
- Elastic Potential Energy energy stored by something that can stretch or compress such as a rubber band or spring.

Gravitational Potential Energy AKA - GPE

- Depends on mass and height.
- GPE = m g h Or

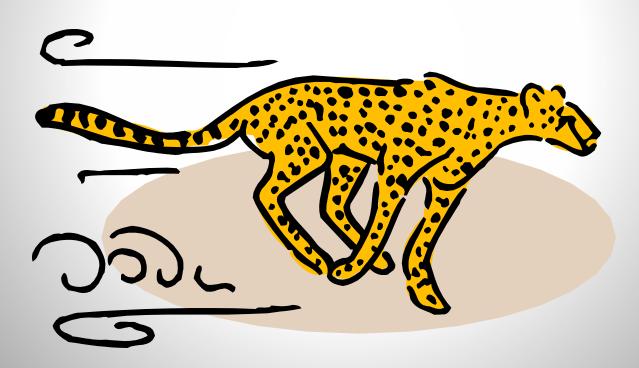


 GPE = mass x free-fall acceleration x height (mg = weight in Newtons)

Example

- A 65 kg rock climber ascends a cliff. What is the climber's gravitational potential energy at a point 35 m above the base of the cliff?
- 65kg = m
 35 m = h
 9.8m/s² = g
 ? = GPE

GPE = 65 x 9.8 x 35


Kinetic Energy

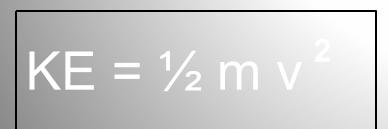
• is Energy in motion.

• Note:

Kinetic energy depends more on speed than on mass.

Kinetic Energy

• KE = $\frac{1}{2}$ mass x velocity ² OR KE = $\frac{1}{2}$ m v ²



AKA = KE

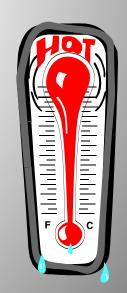
Example

- What is the kinetic energy of a 44kg cheetah running at 31 m/s?
- 44 kg = m 31 m/s = v ? = KE $\text{KE} = \frac{1}{2} (44) \times (31)^2$ $\text{KE} = 22 \times 961$

KE = 21142 J

Forms of Energy

Forms of Energy


Kinetic	Potential	
Mechanical	Thermal	chemical
Electrical	Electromagnetic	Nuclear

• Each of these forms of energy can be converted into other forms of energy

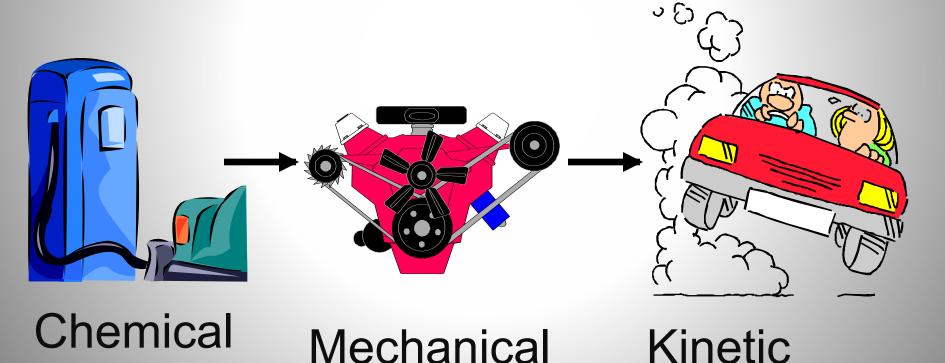
Forms of Energy

 Electrical energy: results from the flow of charged particles or electrons. Electric charges can exert forces that do work

 Thermal Energy: energy given off as heat (friction). The total potential and kinetic energy of all the microscopic particles in an object.

Forms of Energy cont.

- Mechanical Energy

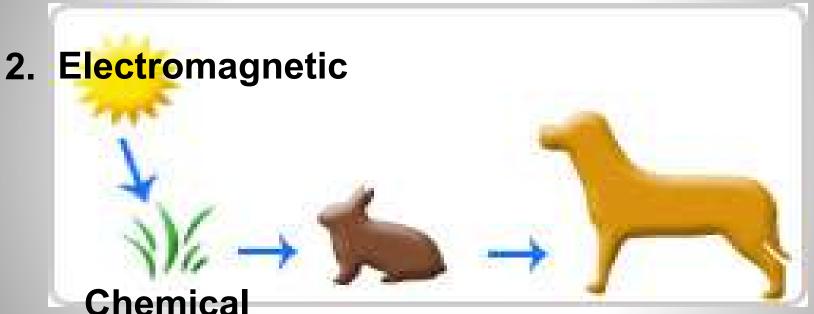

 is the energy
 associated with the motion or position of
 an object. The sum of potential and
 kinetic energy in a system
 (Usually involves movement of an object)
- Chemical Energy is the energy stored in chemical bonds – when the bonds are broken, the released energy can do work.

Forms of Energy cont.
Nuclear Energy: energy stored in atomic nuclei – nuclear fission releases energy by splitting nuclei apart, nuclear fusion releases energy by combining 2 nuclei into a larger nuclei.

 Electromagnetic Energy: a form of energy that travels through space in the form of waves. Visible light and X-rays are examples.

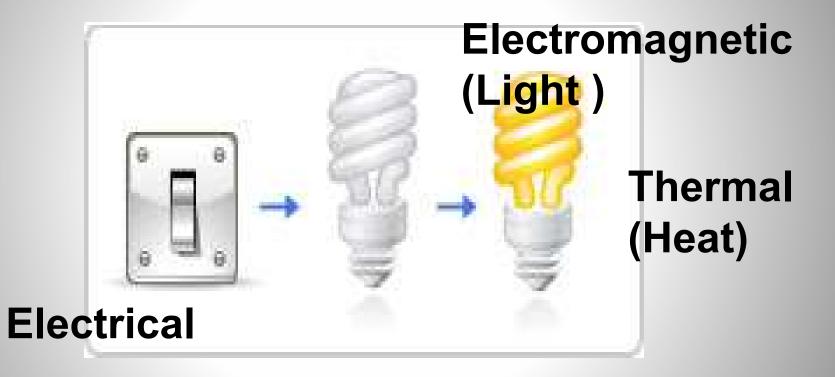
Energy Conversions

• The process of changing energy from one form to another.

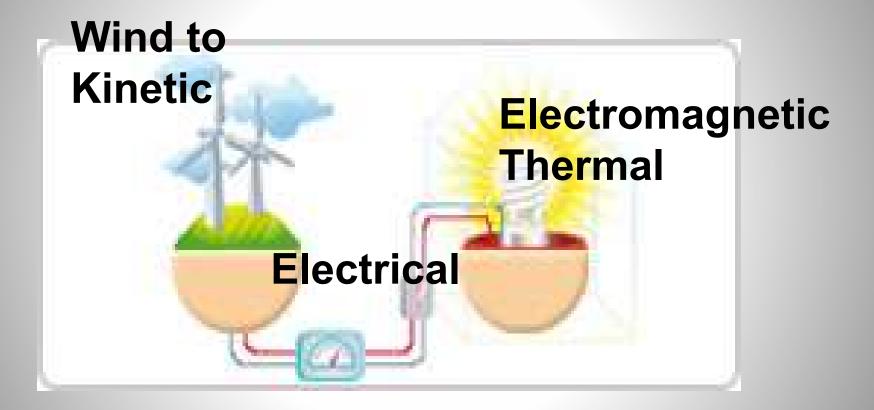


Law of Conservation of Energy

- Energy cannot be created nor destroyed it can only be changed.
- Energy can be transferred to another object/system or to another form (potential to Kinetic)


Identify the energy transformations.

1. Nuclear



Mechanical (movement & storage)

Identify the energy transformations.

Identify the energy transformations.

Conservation of energy practice

- Recall that mechanical energy is the sum of potential and kinetic energy
- ME = PE + KE
- Or (KE + PE) beginning = (KE + PE) end
- Potential energy is energy of position
 - **PE= mg h**
- Kinetic energy is energy of motion
 - KE= $\frac{1}{2}$ m v²
- Can use these equations to find unknown information about a system.

Mechanical Energy

http://www.mrwaynesclass.com/energy/coasterANDene rgy2.swf

Watch the red bars and how they change as the roller coaster moves throughout the track.

Total Mechanical Energy is CONSTANT Potential energy is high ______ Kinetic energy is high ______ Potential energy is low ______ Kinetic energy is low ______ What is happening to the energy in the system?

Practice

 a) Sitting still at the top of a 40.0 m hill a 68.2 kg car what is the cars potential and kinetic energy PE = (68.2 kg) (9.8 m/s²) (40.0m)= 26734.4 J KE = 0 J (sitting still)

b) What is the mechanical energy of the car at the top of the hill

ME = PE + KE = 26734.4 J + 0 J = 26734.4 J

c) At the bottom of the hill how much potential and kinetic energy does the car have.

 $PE = (68.2 \text{ kg}) (9.8 \text{ m/s}^2) (0\text{m}) = 0 \text{ J}$ KE = ME - PE = 26734.4 J - 0 J = 26734.4 J

Thats all for todav