Chapter 14: Work, Power, and Machines

Section 14.1: Work and Power

- In science, _____ is the product of _____ and _____. Work is done when a _____ acts on an object in the _____ the object
- For a ______ to do ______ on an object, some of the force must act in the same _____ as the object moves. If there is
- A _____ does not have to act entirely in the ______ of
- movement to do ______. Any part of a ______ that does not act in the direction of motion _____ on an object.

According to the scientific definition, what is work and what is not?

- 1. A scientist delivers a speech to an audience of his peers.
- 2. A body builder lifts 350 pounds above his head.
- 3. A mother carries her baby from room to room.
- 4. A father pushes a baby in a carriage.

5. A woman carries a 20 kg grocery bag to her car? Formula for work

- The unit of force is ______.
- The unit of distance is _____.
- The unit of work is ______. One ______ is equal to one _____

Sample Problem

1. If a man pushes a concrete block 10 meters with a force of 20 N, how much work has he done?

- _____ is the _____ at which _____ is done.
- Doing work at a ______ rate requires more ______.
- To increase _____, you can increases the _____ done in a given time, or you can do a given amount of work in _____. Formula for Power
- The unit of ______ is a ______ and the unit of time is a ______.
- A joule per second is a ______ which is the SI unit for power.

Sample Problems

1. Two physics students, Ben and Bonnie, are in the weightlifting room. Bonnie lifts the 50 kg barbell over her head (approximately .60 m) 10 times in one minute; Ben lifts the 50 kg barbell the same distance over his head 10 times in 10 seconds.

Which student does the most work?

Which student delivers the most power?

Explain your answers.

2. How much work does a 25N force do to lift a potted plant from the floor to a shelf 1.5m high?

3. How much force is needed to complete 72.3J of work over a distance of 22.8m?

4. You exert a vertical force of 72N to lift a box to a height of 2m in a time of 17s. How much power is used to lift the box?

5. You lift a book from the floor to a bookshelf 5.4m above the ground. How much power is used if the upward force is 15.0N and you do the work in 2.0s?

Section 14.1 Assessment

- 1. What conditions must exist in order for a force to do work on an object?
- 2. What formula relates work and power?
- 3. How much work is done when a vertical force acts on an object moving horizontally?
- 4. A desk exerts an upward force on a computer resting on it. Does this force to work?
- 5. You lift a large bag of flour form the floor to a 1m high counter, doing 100J of work in 2s. How much power do you use to lift the bag of flour?

Section 14.2: Work and Machines

A _____ is a device that _____ a force.

- Machines make work ______ to do. They change the _____ of the force needed, the ______ of a force, or the ______ over which a force acts. Each complete rotation of a car jack handle applies a A ______ over a ______ becomes a ______ over a _____. If a machine increases the _____ over which you exert a force, then it decreases the ______ you need to exert. When you pull an oar a _____, the other end of the oar moves a ______ the amount of force required. Pulling on end of an oar causes the other end of the oar to move in the Because of ______, the work done by a machine is always ______ than the work done on the machine. The ______ you exert on a machine is called the ______. The ______ the input force acts through is known as the The _____ done by the _____ acting through the _____ is called the _____. The _____ that is exerted by a machine is called the ______. The ______ the output force is exerted though is the The ______ of a machine is the _____ multiplied by the
- You cannot get more work out of a machine than ______.

Section 14.2 Assessment

- 1. How can using a machine make a task easier to perform?
- 2. How does the work done on a machine compare to the work done by a machine?
- 3. A machine produces a larger force than you exert. How does the input distance of the machine compare to the output distance?
- 4. You do 200J of work pulling the oars of a rowboat. What can you say about the amount of work the oars doe to move the boat?

- 5. How can you increase the work output of a machine?
- 6. When you swing a baseball bat, how does the output distance the end of the bat moves compare with the distance you move your hands through?

Section 14.3: Mechanical Advantage and Efficiency

The ______ of a machine is the number of times that the machine increases the _____. The ______ is the ratio of the ______.

Formula for actual mechanical advantage (AMA)

- The ______ of a machine is the mechanical advantage in the absence of ______. Because ______is always present, the ______is
- always less than the ______. The ______ is the ratio of the ______
- to the . Formula for ideal mechanical advantage (IMA)

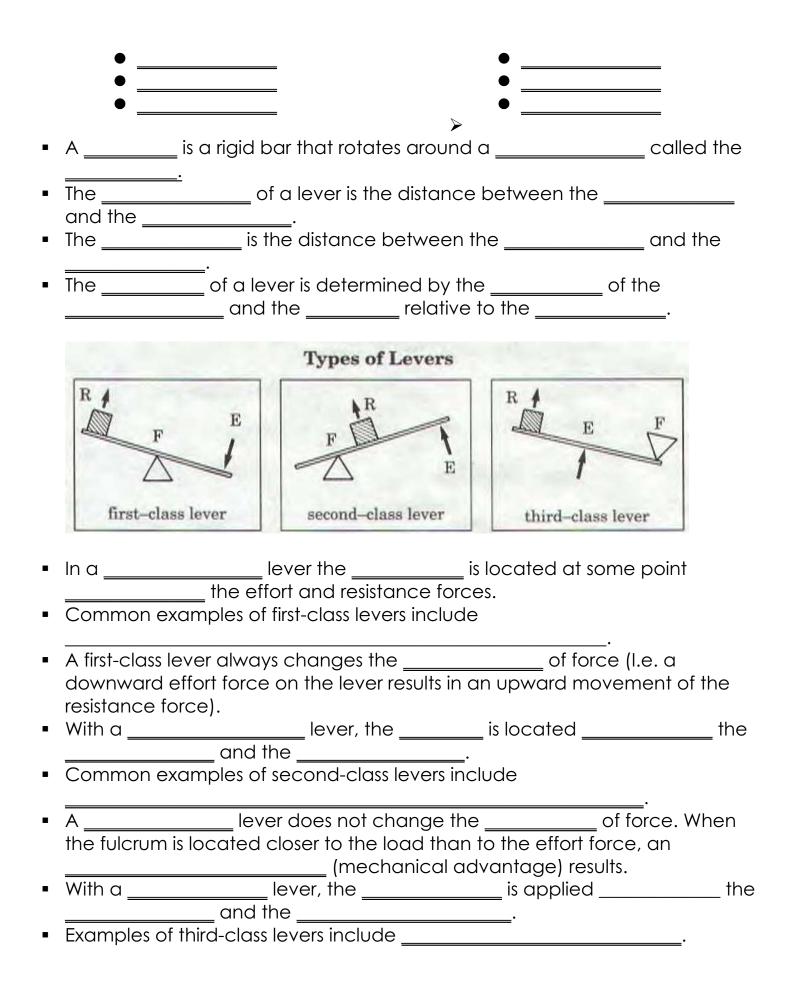
Sample Problems

1. A woman drives a car up a ramp that is 1.8m long. The ramp lifts the car a height of 0.3m. What is the IMA?

2. A construction worker moves a crowbar through a distance of 0.50m to lift a load 0.05m off the ground. What is the IMA of the crowbar?

3. The IMA of a simple machine is 2.5. If the output distance of the machine is 1.0m, what is the input distance?

- Some ______ is lost due to ______. The ______ of work input that becomes work output is the _____ of the machine.
- No machine has ______ efficiency due to ______. Formula for Efficiency


Reducing ______ increases the ______ of a machine.

Section 14.3 Assessment

- 1. Why is the actual mechanical advantage of a machine always less than its ideal mechanical advantage?
- 2. Why can no machine be 100% efficient?
- 3. What information would you use to calculate the efficiency of a machine?
- 4. What is the actual mechanical advantage of a machine that exerts 5N for each 1N of force you exert on the machine?
- 5. You have just designed a machine that uses 1000J of work from a motor for every 800J of useful work the machine supplies. What is the efficiency of your machine?
- 6. If a machine has an efficiency of 40%, and you do 1000J of work on the machine, what will be the work output of the machine?

Section 14.4: Simple Machines

- Many ______ are combinations of two or more of the six different ______.
- The six simple machines are:

•	A lever does not change the		
	class levers always produce a	ana a	
_	corresponding decrease in	of a	
-	The is a simple machine consisting rigidly secured to a		
_	rigidly secured to a To calculate the, divide the where		
-	located by the radius where the is locate		
	An is a slanted surface along which a f	orce moves an	
	object to a		
•	The of an inclined plane is equal to the	e lenath of the	
	divided by the of the inclined plane.		
•	While the inclined plane produces a mechanical advanta		
		· ·	
•	The is a V-shaped object whose sides are two		
•	A wedge of a given length has a IMA	than a	
	wedge of the same length since force is needed.		
•	The is an inclined plane wrapped around a	<u> </u>	
•	Screws with that are closer together have a		
	IMA since it takes less		
•	A is a simple machine that consists of a	that fits into a	
	groove in a		
•	A pulley can be used to simply change the		
	gain a, depending on how th	e pulley is	
	arranged.		
•	The of a pulley is equal to the number of ropes section	ons supporting the	
	load being lifted.		
•	A pulley is said to be a if it does not rise a	or fall with the load	
	being moved. A fixed pulley changes the	of a force;	
	however, it does not create a mechanical advantage.	. .	
•	A rises and falls with the load that is	s being moved. A	
	single moveable pulley creates a mechanical advantage	; however, it does	
	not change the of a force.	a a al a al La PO	
•	Movable pulleys are used to reduce the n	eeaea to lift a	
	heavy object.		
•	A is a combination of two or more		
	that operate together.		

Section 14.4 Assessment

1. Name six kinds of simple machines. Give an example of each.

- 2. What is the ideal mechanical advantage of a ramp if its length is 4.0m and its higher end is 0.5m above its lower end?
- 3. Tightening a screw with a larger spacing between its threads requires fewer turns than a screw with smaller spacing. What is the disadvantage to using a screw with a larger spacing between threads?
- 4. If you want to pry the lid off a pint can, will it require less force to use a long or short screwdriver?
- 5. When the pedals of a bike move through a distance of 0.25m, the rear wheel of the bike moves 1.0m. What is the ideal mechanical advantage of the bike?