•• P. Sci. Unit 1 Introduction Chapter 1

What is Science?

Generally scientists believe that the universe can be described by basic rules and these rules can be discovered by careful, methodical study.

Physics: The study of Forces and Energy Chemistry: The study of Matter and its changes

Pure Science vs Technology

- Pure Science Scientists
- who do experiments to learn()
- more about the world.
- Technology the
- application of science
- (usually by engineers who look for ways to use the science)

Scientific Theory

Is an explanation that has been tested by repeat observations. Are always being questioned and examined. To be valid, a theory must continue to pass each test.

Scientific Theory (cont.)

A theory must explain observations simply and clearly. Experiments that

illustrate the theory must be repeatable.

You must be able to predict from the theory

Scientific Law

States a repeated observation about nature.

Does <u>not</u> explain why an event happens.

Theories and Laws are not absolute

Sometimes theories or Laws have to be changed or replaced completely when new discoveries are made.

Qualitative vs Quantitative

Qualitative – describes with words. 3 2 Quantitative – stated as 5 mathematical equations.

Science Skills

Planning Experiments Critical thinking (logical) Recording **Observations** Reporting Data

Scientific Method

a way to organize your thinking about questions

Begins with an observation that leads to a question. Form a hypothesis – a possible answer that you can test.

Conduct an Experiment to test the hypothesis A good experiment tests only one variable at a time. No experiment is a failure. P

Variables

Variable – anything that can change in an experiment Independent variable – what you change. (manipulated) Dependent variable – what changes because of the independent variable. (responding)

Graphs

A way of organizing and presenting data. Makes relationships

more evident.

Line graphs

Best for displaying data that change. (anything over time)
Numerical vs.
Numerical.

Multiple Line Graphs

Best for
comparing
multiple
values and
distributions

Circle Graphs

(pie charts)

Best for displaying data that are parts of a whole.

Units of Measurement

Scientists use the International System of Units (SI units) for measurements.

When everyone uses the same units, sharing data and results is easier – less mistakes. **Base Units**

The official SI units to measure: Length = meter Volume = liter Mass = gram Time = seconds Temperature = Kelvin

King Henry - Conversions

Use the sentence "King Henry Died by Drinking Chocolate Milk." to remember the order of prefixes.

Kilo Hecto Deka base Deci Centi Milli meter liter gram

Scientific Notation

When writing very large or very small numbers, scientists use a kind of shorthand called scientific notation.

This is a way of writing a number without so many zeros.

Examples:

The speed of light is about 300,000,000 m/s Or 3.0 x 10⁸ The mass of a proton is Or 1.673 X 10⁻²⁴

All you do is move the decimal 850,000,000.0 8,5,0,0,0,0,0,0,0,0 $= 8.5 \times 10^{8}$ 0.000,000,025 0.000000025 $= 2.5 \times 10^{-8}$

