1.

Interval

0 < x < 2

x=12 only

critical value

in interval

The figure above shows a rectangle inscribed in a semicircle with a radius of 2. The area of such a rectangle is given by $A(x) = 2x\sqrt{4-x^2}$, where the width of the rectangle is 2x. It can be shown that $A'(x) = \frac{-2x^2}{\sqrt{4-x^2}} + 2\sqrt{4-x^2}$ and A has critical values of A, A, A, A, and A it can also be shown that A'(x) changes from positive to negative at A is A. Which of the following statements is true?

area=Lw

- A The inscribed rectangle with maximum area has dimensions $\sqrt{2}$ by $\sqrt{2}$.
- length= 252 252 × 52
- B) The inscribed rectangle with minimum area has dimensions $\sqrt{2}$ by $\sqrt{2}$.
- The inscribed rectangle with maximum area has dimensions $2\sqrt{2}$ by $\sqrt{2}$.
- D The inscribed rectangle with minimum area has dimensions $2\sqrt{2}$ by $\sqrt{2}$.

Consider all lines in the xy-plane that pass through both the origin and a point (x, y) on the graph of $y=x^2-x+16$ for $1 \le x \le 8$. The figure above shows one such line and the graph of $y=x^2-x+16$. Which of the following statements is true?

- The line with minimum slope passes through the graph of $y = x^2 x + 16$ at x = 1.
- The line with minimum slope passes through the graph of $y=x^2-x+16$ at x=4.
 - The line with minimum slope passes through the graph of $y = x^2 x + 16$ at x = 7.
- The line with minimum slope passes through the graph of $y = x^2 x + 16$ at x = 8.

The figure above represents a square sheet of cardboard with side length 20 inches. The sheet is cut and pieces are discarded. When the cardboard is folded, it becomes a rectangular box with a lid. The pattern for the rectangular box with a lid is shaded in the figure. Four squares with side length x and two rectangular regions are discarded from the cardboard. Which of the following statements is true? (The volume V of a rectangular box is given by V = lwh.)

- (A) When x = 10 inches, the box has a minimum possible volume.
- B) When = 10 inches, the box has a maximum possible volume.
- (c) When $x = \frac{10}{3}$ inches, the box has a minimum possible volume.
- When $x = \frac{10}{3}$ inches, the box has a maximum possible volume.

$$\frac{dx}{dy} = \ln^2 - 80x^2 + 200$$

$$\frac{dx}{dy} = \ln^2 - 80x^2 + 200$$

$$\frac{2(3x - 10)(x - 10)}{x^2 + 200}$$

$$\frac{2(3x - 10)(x - 10)}{x^2 + 200}$$