1	

\boldsymbol{x}	0 < x < 3	x = 3	3 < x < 9	x = 9	9 < x < 11	x = 11	11 < x < 16
f'(x)	Positive	Undefined	Negative	-3	Negative	0	Positive
f''(x)	Positive	Undefined	Negative	90	Positive	2 O	Positive

The function f is continuous on the interval (0, 16), and f is twice differentiable except at x = 3, where the derivatives are undefined. Information about the first and second derivatives of f for values of x in the interval (0,16) is given in the table above. At what values of x in the interval (0,16) does the graph of fhave a point of inflection? changes ["(x)

$$X=3$$
 $X=9$

$$x = 3 \text{ and } x = 9$$

$$(c)$$
 $x=3$ and $x=11$

$$\bigcirc$$
 $x=9$ and $x=11$

- 2. Let f be the function defined by $f(x) = \frac{1}{3}x^3 3x^2 16x$. On which of the following intervals is the graph of f both decreasing and concave down?
- \bigcirc $(-\infty,3)$
- (-2,3) only
- (c) (3,8)
- (8, ∞) X

f'(x)

$$f'(x) = x^2 - (px - 1)b$$

 $f'(-1) = -2^2 - b(-2) - 1$
 $4 + 12 - 1$

- B (-2.499, -1.829) and (0.969, 1.697)
- (-0.495, 2)
- (-1.311, -0.166)

