1. Let
$$f$$
 be a function such that $f(-1) = 1$. At each point (x, y) on the graph of f , the slope is given by
$$\frac{dy}{dx} = -x^2 - xy + y^2 - 1$$
. Which of the following statements is true?

Let
$$f$$
 be a function such that $f(-1) = 1$. At each point (x, y) on the graph of f , the slope is given by $\frac{dy}{dx} = -x^2 - xy + y^2 - 1$. Which of the following statements is true?

A f has a relative minimum at $x = -1$.

B f has a relative maximum at $x = -1$.

B f has a relative maximum at $x = -1$.

B
$$f$$
 has a relative maximum at $x = -1$.

$$(c)$$
 f has neither a relative minimum nor a relative maximum at $x = -1$.

There is insufficient information to determine whether f has a relative minimum, a relative maximum, or neither at x = -1.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$= -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2(-1) - (-1) + (+2(1))$$

$$2 + (+2) + 2$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + y + 2y + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + y + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y + y + y + 2y$$

$$\int_{-\infty}^{\infty} |x| = -2x - x + y$$

2.	x	0	1	2	3	4	5
	f'(x)	-3	0	-1	5	0	-3
	f''(x)	5.3	-2.0	1.7	-0.5	1.2	-5.1

POS!HE - UP WIN

Let f be a twice-differentiable function. Selected values of f' and f'' are shown in the table above. Which of the following statements are true?

- 1. f has neither a relative minimum nor a relative maximum at x = 1.
- 2. f has a relative maximum at x = 1.
- 3. f has a relative maximum at x = 4.
- (A) I only
- B II only
- c III only
- D I and III only

- Let f be a twice-differentiable function. Which of the following statements are individually sufficient to conclude that x = 2 is the location of the absolute maximum of f on the interval [-5, 5]?
 - 1. f'(2) = 0 meeds more suprort
 - \checkmark 2. x = 2 is the only critical point of f on the interval [-5, 5], and f''(2) < 0.
 - \checkmark 3. x = 2 is the only critical point of f on the interval [-5, 5], and f(-5) < f(5) < f(2)
- (A) II only

-5 <u>0</u> <u>7.5</u>

- B III only
- C I and II only
- D II and III only