1. Let
$$f$$
 be the function defined by $f(x) = (\sin x)e^{-x}$ on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. On which of the following open intervals is f increasing?

(A) $\left(-\frac{\pi}{4}, \frac{\pi}{2}\right)$
(B) $\left(0, \frac{\pi}{2}\right)$ only (C) $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ only (C) \left

constant. Which of the following statements is true?

Let f be the function with derivative given by $f'(x) = x^2 - a^2 = (x - a)(x + a)$, where a is a positive

- (B) f is decreasing for x < -a and x > a because f'(x) < 0 for x < -a and x > a.
- (c) f is decreasing for x < 0 because f'(x) < 0 for x < 0.
- (D) f is decreasing for x < 0 because f''(x) < 0 for x < 0.

- 4. In Let f be the function with derivative given by $f'(x) = \sin x + x \cos x$ for $0 \le x \le \pi$. On which of the following intervals is f increasing?
- A [0, 1.077] only
- B [0, 2.029]
- © [1.077, π]
- \bigcirc [2.029, π] only

