1.	x	-2	-1	0	1	2
	g(x)	-4	-1	4	11	20

The table above gives values of a function g at selected values of z. Which of the following statements, if true, would be individually sufficient to conclude that there exists a number c in the interval [-2,2] such that g(c) = 6

- 1. **g** is defined for all **x** in the interval [-2, 2].
- 2. **g** is increasing on the interval [-2,2]. 3. **g** is continuous on the interval [-2,2].
- II only
- I and III only
- I, II, and III

Selected values of a continuous function f are given in the table above. What is the fewest possible number of zeros of f in the interval [0, 5]?

- A Zero, because **f(x)** is not equal to 0 for any of the values in the table.
- B) One, because f is continuous on the interval [0,5] and f(0) > 0 > f(5).
- (c) Two, because the values for f(x) in the table change from positive to negative twice.
- Three, because f is continuous on the interval [0,5] and f(0) > 0 > f(1), f(1) < 0 < f(3), and f(3) > 0 > f(5).

$$3 = \frac{x^4 + x^3 + x^2 + x + 1}{380 - \ln\left(\frac{x^2 + 1}{2}\right)}$$

Let f be the function defined above. The Intermediate Value Theorem applied to f on the closed interval [10, 12] guarantees a solution in [10, 12] to which of the following equations?

$$A f(x) = 0$$

(B)
$$f(x) = 27.372$$

$$(c) f(x) = 42.421$$

$$f(u) = 29.6$$

$$c = 19.6$$

$$c = 19.6$$

Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers z for which f(z) is a real number.

which
$$f(x)$$
 is a real number.
$$R(t) = \begin{cases} 41\sqrt{\frac{t}{20}} & \text{for } 0 \le t < 20\\ \frac{100t^2 + 1000}{t^2 + 1000} & \text{for } t \ge 20 \end{cases}$$

The total accumulated revenue a company has received up to time t is modeled by the function R defined above, where R(t) is measured in millions of United States dollars and t is the time in years since 1980.

(a) Find $\lim_{t\to\infty} R(t)$. Explain the meaning of $\lim_{t\to\infty} R(t)$ in the context of the problem.

$$\frac{100t^{2}+1606}{t^{2}+606} = 100$$

As time increases, the revenue approaches strong million

Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers \mathbf{z} for

Unless otherwise specified, the domain of a function
$$f$$
 is assumed to be the set of all real numbers which $f(x)$ is a real number.
$$R(t) = \begin{cases} 41\sqrt{\frac{t}{20}} & \text{for } 0 \le t < 20 \\ \frac{100t^2 + 1000}{t^2 + 600} & \text{for } t \ge 20 \end{cases}$$

The total accumulated revenue a company has received up to \mathbf{r} is modeled by the function \mathbf{R} defined above, where R(t) is measured in millions of United States dollars and t is the time in years yes, it is also defined so since 1980.

(b) Is the function
$$R$$
 continuous at $t = 20$? Justify your answer.

$$| iM | 100t^2 + 1000 - 100 (t^2 + 10) - 100(20^2) + 100$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000)$$

$$| (20^2 + 1000) - (20^2 + 1000)$$

$$R(t) = \begin{cases} \frac{41\sqrt{\frac{t}{20}}}{100t^2 + 1000} & \text{for } 0 \le t < 20 \\ \frac{100t^2 + 1000}{t^2 + 600} & \text{for } t \ge 20 \end{cases}$$
The total accumulated revenue a company has received up to time t is modeled by the function R defined above, where $R(t)$ is measured in millions of United States dollars and t is the time in year.

defined above, where R(t) is measured in millions of United States dollars and t is the time in years since 1980.

(c) The company's total accumulated expenses up to time
$$t$$
 is modeled by the function E defined by $E(t) = 3\log_2(12t + 4)$, where $E(t)$ is measured in millions of United States dollars and t is the time in years since 1980. According to these models, is there a time t , for $0 \le t \le 5$, at which the total accumulated profit, $R(t) - E(t)$, is equal to 0? Justify your answer.

in years since 1980. According to these models, is there a time
$$t$$
, for $0 \le t \le 5$, at which the total accumulated profit, $R(t) - E(t)$, is equal to 0? Justify your answer.

$$||C|| - E(D)|| - ||C|| - ||C|| - ||C|| + ||C|| - ||$$

$$411_{50} - 3169_{2}(126)+4)$$
 $41 - 3109_{2}(64)$
 $6)-E(3)-6<0$
 $41 - 3109_{2}(64)$
 $41 - 3109_{2}(64)$