Name:	
Date:	

UNIT 3: DERIVATIVES – STUDY GUIDE

Section 1: Limit Definition (Derivative as the Slope of the Tangent Line)

Section 2: Calculating Rates of Change (Average vs Instantaneous)

AVERAGE VELOCITY	INSTANTANEOUS VELOCITY	
$v_{avg} = \frac{s(t_2) - s(t_1)}{t_2 - t_1}$	s'(t) = v(t)	
AVERAGE ACCELERATION	INSTANTANEOUS ACCELERATION	
$a_{avg} = \frac{v(t_2) - v(t_1)}{t_2 - t_1}$	s''(t) = v'(t) = a(t)	

Section 3: Power Rule

POWER RULE		
$y = x^n \to y' = n \cdot x^{n-1}$		

Section 4: Product & Quotient Rules

PRODUCT RULE	QUOTIENT RULE	
$y = f(x) \cdot g(x) \rightarrow y' = f(x) \cdot g'(x) + f'(x) \cdot g(x)$	$y = \frac{f(x)}{g(x)} \rightarrow y' = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{[g(x)]^2}$	

Section 5: Chain Rule

CHAIN RULE		
$y = f(g(x)) \rightarrow y' = f'(g(x)) \cdot g'(x)$		

Section 6: Complex Derivatives

Section 7: Trigonometric Derivative Rules

TRIGONOMETRIC DERIVATIVES					
$y = \sin x$	$y = \cos x$	$y = \tan x$	$y = \csc x$	$y = \sec x$	$y = \cot x$
$y' = \cos x$	$y' = -\sin x$	$y' = \sec^2 x$	$y' = -\csc x \cot x$	$y' = \sec x \tan x$	$y' = -\csc^2 x$

Section 8: Trigonometric Derivatives using Trig Identities

Section 9: Trigonometric Derivatives using Chain Rule

Unusual Angle

☐ Raised to a Power

□ Combination

Section 10: Higher Order Derivatives (Notation AND Projectile motion applications from Section 2)

f' NOTATION	$oldsymbol{y}'$ NOTATION	D NOTATION	LEIBNIZ NOTATION
f'(x)	y'	$D_x y$	$\frac{dy}{dx}$

Section 11: Implicit Derivatives

Section 12: Derivative Rules without Functions

Section 13: Derivatives of Exponential & Logarithmic Functions

EXPONENTIAL BASE "e"	EXPONENTIAL BASE "a"	LOGARITHMIC BASE "e"	LOGARITHMIC BASE "a"
$y = e^{f(x)}$	$y=a^{f(x)}$	$y = \ln f(x)$	$y = \log_a f(x)$
$y'=e^{f(x)}$	$y' = a^{f(x)} \ln(a)$	$y' = \frac{f'(x)}{f(x)}$	$y' = \frac{f'(x)}{f(x)\ln(a)}$

UNIT 3: DERIVATIVES – REVIEW

<u>Directions</u>: Find f'(x).

1.)
$$f(x) = \frac{1}{2}x^4 - 2x^3 + x + 6$$
 2.) $f(x) = \frac{4}{x} + \frac{5}{x^2}$

2.)
$$f(x) = \frac{4}{x} + \frac{5}{x^2}$$

3.)
$$f(x) = 4\sqrt{x} + 6\sqrt[3]{x^2}$$

<u>Directions</u>: Find y'.

4.)
$$y = (x^2 + 3x)(x^3 - 1)$$

5.)
$$y = 2x^5 \cot x$$

6.)
$$y = \frac{3x}{5x^2 - 1}$$

7.)
$$y = \frac{x^2 - 2x + 5}{x^2 + 2x - 3}$$

<u>Directions</u>: Find $\frac{dy}{dx}$.

8.)
$$y = (3x^4 - 5)^6$$

9.)
$$y = \frac{3}{(x^2+6x)^3}$$

<u>Directions</u>: Use the appropriate rule when finding the derivative.

10.) If
$$f(2) = -2$$
, $f'(2) = 1$ and $g(2) = 13$, $g'(2) = 4$

a.)
$$(f+g)'(2) =$$

b.)
$$(g - f)'(2) =$$

c.)
$$(g \cdot f)'(2) =$$

d.)
$$\left(\frac{f}{g}\right)'(2) =$$

<u>Directions</u>: Find $D_x y$.

11.)
$$y = \csc^4 x$$

12.)
$$y = \tan(5 - 4x^2)$$
 13.) $y = \cos^4(3x)$

13.)
$$y = \cos^4(3x)$$

<u>Directions</u>: Find f'(x).

14.)
$$f(x) = \sec x \cos x + \sin^2 x \csc x$$

15.)
$$f(x) = \tan x \cos x \cot x$$

<u>Directions</u>: Find f'''(x) and f'''(-1) for the following function.

16.)
$$f(x) = 3x^6 - 5x^4 + 6x^3 - 7x$$

<u>Directions</u>: Find the y'.

17.)
$$y = e^{9x-4x^3}$$

18.)
$$y = 5^{2x^3-7}$$

19.)
$$\log(6x^2)$$

20.)
$$ln(4x^2 - 3x)$$

<u>Directions</u>: Find the implicit derivative.

21.)
$$8x^2 - 2y^2 = 4$$

22.)
$$\cos y + 6xy = 3x^2$$

<u>Directions</u>: Find the slope and equation of the tangent line on the graph of the following.

23.)
$$f(x) = 2x^3 - 5x$$
 at the point (2, 6)

24.)
$$x^2y^2 = 9$$
 at the point (1, 3)

<u>Directions</u>: Answer the following questions.

25.) Find the point(s) on the graph of $f(x) = x^3 - 6x^2 - 10x$ where the slope is 5.

26.) The position of an object is given by $s(t) = t^3 + 4t$. What is the *average velocity* of the object in the time interval [1, 4]?

27.) An object travels so that its position is given by $s(t) = 2t^4 + 5t^3 - t + 2$. Find the *instantaneous velocity* at t = 4.

28.) A particle has a position function of $s(t) = 8t^5 - 5t^4$.

Find the *instantaneous acceleration* at t = 3.

29.) A particle has a position function of $s(t) = 3t^2 - 6t + 18$. At what time will the velocity equal 6 units/sec?

- 30.) Phillies star, Shane Victorino "The Flyin' Hawaiian" jumps off a cliff into the water below and his position (feet) is defined after t seconds by the following: $s(t) = -16t^2 + 32t + 48$.
- a.) What is his initial height? What is his initial velocity?
- b.) When does he reach his maximum height? What is his maximum height?
- c.) What other moment in time is his height the same as his initial height? What is his velocity?
- d.) When does "The Flyin' Hawaiin" reach the water? What is his impact velocity?
- 31.) Show the setup for finding the derivative using the limit definition.

a.)
$$f(x) = x^2 - 2x + 5$$

b.)
$$g(x) = \frac{2}{x^2 + x}$$

c.)
$$h(x) = \cos x$$

SOLUTIONS

1.)
$$f'(x) = 2x^3 - 6x^2 + 1$$

1.)
$$f'(x) = 2x^3 - 6x^2 + 1$$
 2.) $f'(x) = \frac{-4}{x^2} - \frac{10}{x^3}$

3.)
$$f'(x) = \frac{2}{\sqrt{x}} + \frac{4}{\sqrt[3]{x}}$$

4.)
$$y' = 5x^4 + 12x^3 - 2x - 3$$

5.)
$$y' = -2x^5 \csc^2 x + 10x^4 \cot x$$

6.)
$$y' = \frac{-15x^2 - 3}{(5x^2 - 1)^2}$$

7.)
$$y' = \frac{4x^2 - 16x - 4}{(x^2 + 2x - 3)^2}$$

8.)
$$\frac{dy}{dx} = 72x^3(3x^4 - 5)^5$$

9.)
$$\frac{dy}{dx} = \frac{-18x - 54}{(x^2 + 6x)^4}$$

d.)
$$\frac{21}{169}$$

11.)
$$D_x y = -4 \csc^4 x \cot x$$

12.)
$$D_x v = -8x \sec^2(5 - 4x^2)$$

12.)
$$D_x y = -8x \sec^2(5 - 4x^2)$$
 13.) $D_x y = -12 \sin(3x) \cos^3(3x)$

14.)
$$f'(x) = \cos x$$

15.)
$$f'(x) = -\sin x$$

16.)
$$f'''(x) = 360x^3 - 120x + 36$$

 $f'''(-1) = -204$

17.)
$$y' = (9 - 12x^2)e^{9x - 4x^3}$$

18.)
$$y' = 6x^2 \cdot 5^{2x^3 - 7} \cdot \ln(5)$$

19.)
$$y' = \frac{2}{x \ln(10)}$$

20.)
$$y' = \frac{8x-3}{4x^2-3x}$$

21.)
$$y' = \frac{4x}{y}$$

22.)
$$y' = \frac{6x - 6y}{-\sin y + 6x}$$

23.)
$$m_{tan} = 19$$
 $y = 19x - 32$

24.)
$$m_{tan} = -3$$
 $y = -3x + 6$

25.)
$$(-1,3)$$
 & $(5,-75)$

26.)
$$v_{avg} = 25 \text{ units/sec}$$

27.)
$$v(4) = 751 \, units/sec$$

28.)
$$a(3) = 3780 \text{ units/sec}^2$$

29.)
$$t = 2 sec$$

30.) a.)
$$s(0) = 48ft$$
, $v(0) = 32ft/sec$

b.)
$$t = 1 \sec, s(0) = 64ft$$

c.)
$$t = 2 \sec, v(2) = -32ft/\sec$$

d.)
$$t = 3sec$$
, $v(3) = -64ft/sec$

31.) a.)
$$f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - 2(x+h) + 5 - (x^2 - 2x + 5)}{h}$$

b.)
$$g'(x) = \lim_{h \to 0} \frac{\frac{2}{(x+h)^2 + (x+h)} - \frac{2}{x^2 + x}}{h}$$

c.)
$$h'(x) = \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}$$