Bohr Diagrams and Lewis Dot Structures

What You've Already Learned in Class

•You learned that electrons can exist in different <u>energy clouds</u>

•You learned that the number of electrons in an atom are equal to the number of protons.

Learning Objective

 Use knowledge of the Periodic Table to draw a Bohr Diagram with electron configurations.

2. To be able to determine how many valance electrons an element has.

 Use knowledge of valence electrons to draw a Lewis Dot Structure

Review!

Electron Cloud	Maximum Electrons
1	2
2	8
3	8 (happy with 8, but can hold up to 18)

Bohr Diagram

 A model of an atom with the nucleus at the center, and the electrons drawn around it on different energy levels or electron clouds.

Practice

- For an Atom of Hydrogen:
- How many electrons? 1
- Now, draw the electron

Next

- For an Atom of **Helium**:
- How many electrons? 2
- Now, draw the electrons

- For an Atom of Lithium:
- How many electrons? 3
- How many electron clouds? 2
- Now, draw the electrons

Bohr Diagram Summary

- Draw the nucleus.
- Draw the total number of electrons in the correct cloud arrangement
- Remember:
 - -1st energy level can hold <u>2 e-</u>
 - 2nd can hold <u>8 e-</u>
 - 3rd happy with <u>8 e-</u>

Valence Electrons

• Valence Electrons are the electrons on the outermost electron cloud of an Atom.

Valence Electrons

- Determined by the elements Group.
- <u>Groups</u> are the Vertical Columns (up and down) on the Periodic Table.

Lewis Dot Structure

 All elements in the 1st group have only 1 valence electron. All elements in the first group have a Lewis Dot Structure like this:

Period

Determining Valence Electrons

 All Elements in the <u>2nd group</u> have <u>2 valence e-</u>

Period

Determining Valence Electrons

Skip the middle section, groups 3-12, called the transition metals (These don't always follow the rules. You'll learn about these later.)

To find valence electrons in groups 13-18 drop the 1.

Period

Exception

 Helium (He) is an exception.
It's in the 18th group, but only has 2 valence electrons.

Period

Lewis Structure Summary

- 1. Draw the chemical symbol.
- 2. Determine valence electrons by atom's group number.
- Skip the middle when counting groups, and drop the 1 in front of groups 13-18
- 4. Draw the valence electrons around chemical symbol.

Lewis Structure Practice

Draw the Lewis Structure for a Nitrogen atom.

