Biology Section 6.3 & 6.4 Notes Part 1

- Many of your <u>traits</u> (distinguishing characteristics that are inherited) resemble those of your parents.
- Heredity is the passing of traits from parents to offspring.
- Gregor Mendel, Austrian monk began the scientific study of heredity
- Mendel experimented with garden pea plants
 - 1st to develop rules that accurately predict patterns of heredity
 - These patterns form the basis of **genetics**, the study of biological inheritance patterns and variation in organisms.
- The garden pea was a good subject for studying heredity for several reasons:
 - 1. many traits that have 2 clearly different forms
 - ex. Flower color = purple or white
 - 2. mating of pea plants can be easily controlled, self-fertilization (self-pollination) or cross-pollination is possible
 - 3. small, easy to grow, mature quickly, many offspring

•	Mendel studied 7 Traits (p. 179, figure 6.10)		
	Flower color	pod color	plant height
	Seed color	pod shape	
	Seed shape	flower position	

- Mendel's 1st experiments were <u>monohybrid crosses</u> crosses involving 1 pair of contrasting traits
 Ex. Purple flowers crossed with white flowers
 - .
- Mendel's experiments had 3 steps:
 - each garden pea variety was allowed to self-pollinate for several generations, this ensured that the plants were <u>true-breeding</u> for a particular trait – these plants were the <u>P generation (parental)</u>
 - 2. 2 P generation plants with contrasting forms of a trait were cross-pollinated the offspring of this generation were the F_1 generation
 - 3. F_1 generation plants were allowed to self-pollinate the offspring of these F_1 generation plants were the F_2 generation
- The results of Mendel's crosses: Only one form of the trait is seen in the F₁ generation, but when F₁ generation plants are allowed to self-pollinate, the missing trait reappears in some plants in the F₂ generation

 F_1 – purple flowers X white flowers = all purple flowers F_2 – ration of 3:1 purple flowers : white flowers

• For each of the 7 traits Mendel studied, he found the same 3:1 ratio of plants expressing the contrasting traits in the F₂ generation.

Section 6.3 & 6.4 Notes Part 2

- Mendel developed 4 hypotheses based on the results of his experiments. These 4 hypotheses make up the Mendelian theory of heredity which forms the foundation of genetics.
- 1. For each inheritable trait, an individual has 2 copies of a <u>gene</u> a piece of DNA that stores instructions to make a certain protein 1 from each parent
- 2. there are different forms of genes these are called <u>alleles</u>
- 3. when 2 different alleles occur together, one may be expressed, while the other may have no observable effect on the organism's appearance expressed form = <u>dominant</u> form not expressed = <u>recessive</u>
- when gametes are formed, the alleles for each gene in an individual separate independently of one another gametes carry only 1 allele for each inherited trait during fertilization each gamete contributes one allele
- Dominant alleles capital letter
- Recessive alleles lowercase letter
- If the 2 alleles of a particular gene present in an individual are the same the individual is **homozygous** for that trait
 - Ex. YY = yellow pea alleles
- If the alleles of a particular gene present in an individual are different the individual is <u>heterozygous</u> for that trait
 Ex. Xx = 1 yellow nee allele and 1 green nee allele
 - Ex. Yy = 1 yellow pea allele and 1 green pea allele
- In heterozygous individuals, only the dominant allele is expressed
 - Ex. Ff F =freckles (dominant)
 - F = no freckles (recessive)
- * <u>Genotype</u> set of alleles an individual has
- * <u>Phenotype</u> physical appearance determined by which alleles are present Ex. Pp = genotype purple = phenotype
- Mendel's ideas are often referred to as the Laws of Heredity.
 - 1. <u>Law of Segregation the 2 alleles for a trait separate when the gametes are formed</u>
 - Law of Independent Assortment alleles of different genes separate independently of one another during gamete formation Ex. Plant height doesn't influence flower color