Colquitt County Biology Pacing Guide 2020-2021 (Unit indexes are linked through unit titles.)

Unit	Standards	Time	Textbook Chapters
<u>Unit 1a:</u> <u>Biology</u> <u>Basics</u> <u>Unit 1b:</u> <u>Macromole</u> <u>cules</u>	Lab practices, 7 traits to be considered living, levels of organisms and biochem SB1c.Construct arguments supported by evidence to relate the structure of macromolecules (carbohydrates, proteins, lipids, and nucleic acids) to their interactions in carrying out cellular processes. (Clarification statement: The function of proteins as enzymes is limited to a conceptual understanding.)	1 ½ weeks A 2 ½ weeks B	Chapter 1 & 2
<u>Unit 2a:</u> <u>Cells and</u> <u>Cell</u> <u>Transport</u>	 SB1a. Construct an explanation of how cell structures and organelles (including nucleus, cytoplasm, cell membrane, cell wall, chloroplasts, lysosome, Golgi, endoplasmic reticulum, vacuoles, ribosomes, and mitochondria) interact as a system to maintain homeostasis. SB1d.Plan and carry out investigations to determine the role of cellular transport (e.g., active, passive, and osmosis) in maintaining homeostasis. 	3 Weeks	Chapter 8
<u>Unit 2b:</u> <u>Cell</u> <u>Energetics</u>	SB1e.Ask questions to investigate and provide explanations about the roles of photosynthesis and respiration in the cycling of matter and flow of energy within the cell (e.g., single-celled alga). (Clarification statement: Instruction should focus on understanding the inputs, outputs, and functions of photosynthesis and respiration and the functions of the major sub-processes of each including glycolysis, Krebs cycle, electron transport chain, light reactions, and Calvin cycle.)	3 weeks	Chapter 9 and 10
<u>Unit 3:</u> <u>Cell Cycle,</u> <u>Mitosis</u>	SB1b . Develop and use models to explain the role of cellular reproduction (including binary fission, mitosis, and meiosis) in maintaining genetic continuity.	2 weeks	Chapter 11
<u>Unit 4:</u> <u>DNA and</u> <u>Protein</u> <u>Synthesis</u>	SB2a . Construct an explanation of how the structures of DNA and RNA lead to the expression of information within the cell via the processes of replication, transcription, and translation.	3 weeks	Chapter 13 and 14
<u>Unit 5a:</u> <u>Mendelian</u> <u>Genetics</u> <u>And</u> <u>non-mende</u> <u>lian</u>	 SB3a.Use Mendel's laws (segregation and independent assortment) to ask questions and define problems that explain the role of meiosis in reproductive variability. SB3b. Use mathematical models to predict and explain patterns of inheritance. (Clarification statement: Students should be able to use Punnett squares (monohybrid and dihybrid crosses) and/or rules of probability, to analyze the following inheritance patterns: dominance, codominance, incomplete dominance.) SB3c. Construct an argument to support a claim about the relative advantages and disadvantages of sexual and asexual reproduction. 	3 weeks	Chapter 12

Unit 5b: Genetics and Meiosis & Biotechnol ogy	 SB2b. Construct an argument based on evidence to support the claim that inheritable genetic variations may result from: new genetic combinations through meiosis (crossing over, nondisjunction); non-lethal errors occurring during replication (insertions, deletions, substitutions); and/or heritable mutations caused by environmental factors (radiation, chemicals, and viruses) SB2c.Ask questions to gather and communicate information about the use and ethical considerations of biotechnology in forensics, medicine, and agriculture. (Clarification statement: The element is intended to include advancements in technology relating to economics and society such as advancements may include Genetically Modified Organisms.) 	2 weeks	Chapter 12
Unit 6: Evolution and Natural Selection	 SB6a. Construct an explanation of how new understandings of Earth's history, the emergence of new species from pre-existing species, and our understanding of genetics have influenced our understanding of biology. SB6b. Analyze and interpret data to explain patterns in biodiversity that result from speciation. SB6c. Construct an argument using valid and reliable sources to support the claim that evidence from comparative morphology (analogous vs. homologous structures), embryology, biochemistry (protein sequence) and genetics support the theory that all living organisms are related by way of common descent. SB6d. Develop and use mathematical models to support explanations of how undirected genetic changes in natural selection and genetic drift have led to changes in populations of organisms. (Clarification statement: Element is intended to focus on basic statistical and graphic analysis. Hardy Weinberg would be an optional application to address this element.) SB6e. Develop a model to explain the role natural selection plays in causing biological resistance (e.g., pesticides, antibiotic resistance, and influenza vaccines). 	5 weeks	Chapter 20, 17, 18, 19
<u>Unit 7:</u> <u>Classificati</u> <u>on</u>	 SB4a. Construct an argument supported by scientific information to explain patterns in structures and function among clades of organisms, including the origin of eukaryotes by endosymbiosis. Clades should include: archaea bacteria eukaryotes fungi plants animals (Clarification statement: This is reflective of 21st century classification schemes and nested hierarchy of clades and is intended to develop a foundation for comparing major groups of organisms. The term 'protist' is useful in describing those eukaryotes that are not within the animal, fungal or plant clades but the term does not describe a well-defined clade or a natural taxonomic group.) SB4b. Analyze and interpret data to develop models (i.e., cladograms and phylogenetic trees) based on patterns of common ancestry and the theory of evolution to determine relationships among major groups of organisms. 	4 weeks	Chapter 19, 21, 22.2 24.1,
<u>Unit 8:</u>	SB5a.Plan and carry out investigations and analyze data to support	7 weeks	Chapter 4,5,

<u>Ecology</u>	 explanations about factors affecting biodiversity and populations in ecosystems. (Clarification statement: Factors include population size, carrying capacity, response to limiting factors, and keystone species.) SB5b. Develop and use models to analyze the cycling of matter and flow of energy within ecosystems through the processes of photosynthesis and respiration. Arranging components of a food web according to energy flow. Comparing the quantity of energy in the steps of an energy pyramid. Explaining the need for cycling of major biochemical elements (C, O, N, P, and H). SB5c. Construct an argument to predict the impact of environmental change on the stability of an ecosystem. SB5d. Design a solution to reduce the impact of a human activities may include chemical use, natural resources consumption, introduction of non-native species, greenhouse gas production.) SB5e. Construct explanations that predict an organism's ability to survive within changing environmental limits (e.g., temperature, pH, drought, fire). 	6, 7
EOC Review	ALL UNITS	

Additional Resources

State Standards

https://www.georgiastandards.org/Georgia-Standards/Documents/Science-Biology-Georgia-Standards.pd f

GPB

https://www.gpb.org/education/learn

Discovery Education

https://www.discoveryeducation.com/

Achievement Level Descriptors

https://www.gadoe.org/Curriculum-Instruction-and-Assessment/Assessment/Documents/Milestones/ALD /ALDS for Milestones EOC Biology 12.2017.pdf

Content Weights

https://www.gadoe.org/Curriculum-Instruction-and-Assessment/Assessment/Documents/Milestones/Cont ent%20Weights/ContentWeights_EOCCharts_August_2019.pdf

Georgia Study Guide for Parents and Students

https://www.gadoe.org/Curriculum-Instruction-and-Assessment/Assessment/Documents/Milestones/Stud y-Resource%20Guides/Study_Guide_GRHS_BIOL_2020.pdf

Science Instructional Framework

5 E Instructional Model

The 5E instructional model is built on the idea that learners build on and construct new ideas on top of their old ones. Advantages of the 5E model include: Enhancing mastery of subject matter, Developing scientific reasoning, Understanding the complexity and ambiguity of empirical work, Developing practical skills, Understanding the nature of science, Cultivating interest in science and interest in learning science, Developing teamwork abilities.

Engagement	Exploration	Explanation	Extend/Elaborati on	Evaluation
Teacher generates interest, assess prior knowledge, connects prior knowledge, sets instructional focus on the concept,	Students experience key concepts, learn new skills, asking question,reflect on their thinking and develop relationships and understanding of concepts	Connecting prior knowledge to new content/discoveries, use of academic language, teacher and students work together	Apply learning to similar situations, explain new situation with formal academic language,	Should be ongoing throughout the learning phase, shows evidence of accomplishment,Teacher, peer and self assessments
Teacher actions: Motivates, creates interest, raises questions, taps into prior knowledge	Teacher actions: Moves into a facilitator role, observes students, asks guiding questions, encourages teamwork, provides materials and resources, provide adequate time for students to engage with the materials	Teacher actions: Encourages students to explain understandings in their own words, provides explanations of definitions, laws, theories, ask clarifying questions, builds onto students understanding, provide a variety of instructional strategies, develop academic language, formative assessments to gauge understanding	Teacher actions: Provide an opportunity for students to apply their new gained information to enhance additional learning, remind students to look for alternative ways to solve the problem,providing guidance on perseverance	Teacher actions: Observes students, asks open-ended questions, assess students, encourages students to self assess
Student actions: Ask questions, attentive to teacher/classmates, makes connections to prior learning, self reflects on what they already know, what do they want to know	Student actions: Conducts experiments, activities, work with groups to make meaning of the problem, record observations, use journals, listen to others ideas,	Student actions: Explain solutions, critiques or ask further questions of others solutions, refers back to notes and journals to communicate findings and understanding, self assesses their own learning	Student actions: Generates interest in new learning, explore related content, records observations and interacts with peers to broaden one's o	Student actions: Self evaluates, uses academic language, demonstrates understanding of concept, solves problems
Example: Topic : Observe and describe the process of erosion, transportation, and deposition of the earth's land surface using natural phenomena and models Materials : paint tray (the kind used for a paint roller), pieces of sod	Example: Construct a model to investigate how these changes may have occurred. Provide materials so the students can construct their own model of a landscape. It should include a piece of sod, fine potting soil, and a heavy clay like soil. Have	Example: Tell me what some of your predictions were before it rained on your landscape. (Record on board.) What actually happened to your landscape when it rained on it? (record so you can make comparisons.) How is your landscape	Example: Using the same paint roller tray as the base for their landscape, have the groups of students plan a method to decrease or eliminate erosion. Students should draw a diagram of the model planned and label the materials used in their	Example: Have photographs representing each process and have students identify and explain why they identified it as such. Have students take a walk in their own neighborhood tonight to find examples of each

				1
(enough for each group),	them use a paint roller	different after the rain	landscape. They should	process. They should draw
potting soil, heavy clay	tray as the base of the	than before it rained on	write a short explanation	and write one sentence
like soil, Rainmaker (paper	landscape. Do not put any	it?	explaining why they think	telling what they
cup with about ten tiny	landscape materials in the	What happened to the	this will work to curb	observed.
holes poked in the	bottom well; it should	soil? Where did it go?	erosion. (Tell students	
bottom) , Water.	remain empty. Once	Why did this happen?	that you will provide the	Have students write their
	students have constructed		same materials that they	own definition and list an
Activity	their models, have them	As students share their	used today and they are	example for each process
	diagram and label their	ideas and understandings,	responsible for supplying	in their science journals.
1.bottom of slide under	models and make a	record key phrases on the	the rest of the materials	
swing	prediction as to what will	board. Some phases that	to build their new	
	happen if it "rains" on	may be valuable to your	landscape tomorrow.)	
2.end of splash guard by	their landscape.	later discussion may		
rain spout at entrance to		include:dirt and soil	Have students use a	
door	One student pours a cup	washed away,the soil	variety of resources and	
	of water all at once into	collected at the bottom of	references to research	
3. path leading to the	the rainmaker. Hold the	the slope, the water	various landmarks that	
playground at the bottom	rainmaker about 4 inches	hollowed out the soil,	are the result of these	
of hill/slope	above the upper end of	the rain carried the soil	processes.	
	the landscape and slowly	down the hill,when the		
Do you notice anything	move it back and forth so	water washed away the		
different about these	the water "rains" down on	soil it formed a hole		
areas? (They are just dirt;	the model landscape.	Relate their observations		
no grass is growing here.)	Observe what happens to	to the processes scientists		
What do you think caused	the landscape. When it is	observe over an extended		
these changes? (Students	finished raining the	period of time. Use		
walking over them; water	students observe the final	student models to identify		
running through it)	effects of the rain on their	and label erosion and		
	landscape. Have students	deposition. Have students		
	go back to their	work to create definitions		
	predictions and record	for these terms. When		
	what actually happened.	you are sure students		
		have a real understanding		
		of the terms, formulate a		
		final definition and post		
		on board or chart in the		
		classroom for future		
		reference. Demonstrate		
		the process of		
		transportation and lead		
		students to understand		
		that it is the movement of		
		place to apother Befer to		
		the list generated during		
		the operation and have		
		students make		
		connections: they should		
		use the new terms to		
		discuss and evolain what		
		they saw Help them to		
		understand that they just		
		used water to simulate		
		erosion, transportation		
		and deposition, but it can		
		also be caused by wind		
		people, animals, etc.		

Science and Engineering Practices		
Asking questions and defining problems	Developing and using models	
A practice of science is to ask and refine questions that lead to	A practice of both science and engineering is to use and	

descriptions and explanations of how the natural and designed world(s) works and which can be empirically tested. Engineering questions clarify problems to determine criteria for successful solutions and identify constraints to solve problems about the designed world. Both scientists and engineers also ask questions to clarify ideas.	construct models as helpful tools for representing ideas and explanations. These tools include diagrams, drawings, physical replicas, mathematical representations, analogies, and computer simulations. Modeling tools are used to develop questions, predictions and explanations; analyze and identify flaws in systems; and communicate ideas. Models are used to build and revise scientific explanations and proposed engineered systems. Measurements and observations are used to revise models and designs.
Planning and carrying out investigations	Using mathematics and computational thinking
Scientists and engineers plan and carry out investigations in the field or laboratory, working collaboratively as well as individually. Their investigations are systematic and require clarifying what counts as data and identifying variables or parameters. Engineering investigations identify the effectiveness, efficiency, and durability of designs under different conditions	In both science and engineering, mathematics and computation are fundamental tools for representing physical variables and their relationships. They are used for a range of tasks such as constructing simulations; solving equations exactly or approximately; and recognizing, expressing, and applying quantitative relationships. Mathematical and computational approaches enable scientists and engineers to predict the behavior of systems and test the validity of such predictions.
Analyzing and interpreting data	Constructing explanations and designing solutions
Scientific investigations produce data that must be analyzed in order to derive meaning. Because data patterns and trends are not always obvious, scientists use a range of tools—including tabulation, graphical interpretation, visualization, and statistical analysis—to identify the significant features and patterns in the data. Scientists identify sources of error in the investigations and calculate the degree of certainty in the results. Modern technology makes the collection of large data sets much easier, providing secondary sources for analysis. Engineering investigations include analysis of data collected in the tests of designs. This allows comparison of different solutions and determines how well each meets specific design criteria— that is, which design best solves the problem within given constraints. Like scientists, engineers require a range of tools to identify patterns within data and interpret the results. Advances in science make analysis of proposed solutions more efficient and effective.	The end-products of science are explanations and the end-products of engineering are solutions. The goal of science is the construction of theories that provide explanatory accounts of the world. A theory becomes accepted when it has multiple lines of empirical evidence and greater explanatory power of phenomena than previous theories. The goal of engineering design is to find a systematic solution to problems that is based on scientific knowledge and models of the material world. Each proposed solution results from a process of balancing competing criteria of desired functions, technical feasibility, cost, safety, aesthetics, and compliance with legal requirements. The optimal choice depends on how well the proposed solutions meet criteria and constraints.
Engaging in argument from evidence	Obtaining, evaluating, and communicating information
Argumentation is the process by which evidence-based conclusions and solutions are reached. In science and engineering, reasoning and argument based on evidence are essential to identifying the best explanation for a natural phenomenon or the best solution to a design problem. Scientists and engineers use argumentation to listen to, compare, and evaluate competing ideas and methods based on merits. Scientists and engineers engage in argumentation when investigating a phenomenon, testing a design solution, resolving questions about measurements, building data models, and using evidence to evaluate claims	Scientists and engineers must be able to communicate clearly and persuasively the ideas and methods they generate. Critiquing and communicating ideas individually and in groups is a critical professional activity. Communicating information and ideas can be done in multiple ways: using tables, diagrams, graphs, models, and equations as well as orally, in writing, and through extended discussions. Scientists and engineers employ multiple sources to obtain information that is used to evaluate the merit and validity of claims, methods, and designs

The Science Standards-Based Classroom Instructional Framework provides a common language of instruction in order to successfully implement high quality practices. The tool can be used to develop lesson plans as well as a guide for teachers to reference during instruction. It is imperative that an opening, transition, work and closing is addressed with each lesson.

.

٠

SCIENCE STANDARDS-BASED CLASSROOM INSTRUCTIONAL FRAMEWORK

SCHOOL & DISTRICT EFFECTIVENESS

OPENING Instructional Framework Teacher: Student: Introduces phenomena to engage Accesses prior knowledge students in investigations Asks thought-provoking and clarifying questions. Engages students/accesses prior knowledge and makes connections by Participates in classroom encouraging them to ask questions discussions; engages in . Provides explicit instruction aligned to investigations and analyzes standard(s), including skill development thinking and conceptual understanding Models science and engineering practices and questioning based on crosscutting concepts aning Transition #Work Season #Dia Time will vory based on instructional focus TRANSITION TO WORK SESSION Teacher Student: PERVASIVE LESSON Provides guidance to engage in exploration of phenomena Engages in exploration of PRACTICES phenomena Teacher will embed pervasive Helps students in Identifying routines to Participates in discussion practices throughout lesson based on instructional facus engage in collaboration Prepares organizing tools Introduces organizing tools Asks questions or define Reviews success criteria and expectations for work problems Literacy Across the Content: Disciplinary literacy Content literacy Close reading WORK SESSION Disciplinary research/ Student: Teacher: reading to learn Facilitates independent and small . Engages in independent or group work; scattolds learning tasks collaborative learning Writing Across the Content Demonstrates proficiency of Engages students in the 3-dimensions of Content writing Writing process science and engineering science instruction. Monitors, assesses and documents practices, crossoutting Writing to learn student progress and provides concepts and core standards-based feedback disciplinary ideas Vocabulary Development: Completes conceptually rich Provides small group instruction Academic vocabulary Content vocabulary performance tasks, research Allows students to engage in productive struggle, make mistakes, and engage in or guided practice Discipline vocabulary error analysis Conferences with teacher Engages in three-Conferences formally and informally and receives standardsdimensional learning with students hased teedback Formative Assessment: Formal assessments CLOSING Informal assessments Teacher: Student: Standards-based feedback Formally or informally assesses student Shares, assesses, and justifies understanding work using language of the Classroom Culture: Asks questions targeting students' standards Models practices and explanations and claims to provide Provides peer feedback and procedures feedback asks clarifying questions using Encourages risk-taking and Provides phenomena that challenges longuage of the standards collaboration students' explanations Reflects and summarizes Demonstrates high Engages students in summarizing learning progress toward mastery of expectations in classroom and celebrates progress toward mastery of learning torget/standard discourse standard(s) based on success criteria Emphasizes safety identifies next steps for instruction based on practices data analysis

Georgia Department of Education