Chapter 11: Introduction to Genetics

□ Notes

11-1 The Work of Gregor Mendel

- Genetics: The branch of bio that studies heredity
- Heredity: The key difference between species. This is what makes us humans, cats cats, and dogs dogs.

I. Gregor Mendel (1822) – "Father of Genetics"

□ A. Self-Pollination

- 1. Mendel studied pea plants.
- 2. Pea plants have both male and female parts in their flowers so they selfpollinate.

□ B. Cross-Pollination

- Mendel cut the male parts off of some plants and took pollen from other plants – cross pollination.
- 2. Mendel was able to cross plants with different characteristics.

Purebred

1. The self-pollinating peas were purebred. They produced offspring that were identical to themselves.

D. Traits

- 1. Traits are the characteristics of something.
- 2. Mendel noticed all of the plants were either short or tall.

II. Genes & Dominance

Hybrids

- Mendel decided to cross tall/short, round/wrinkled, yellow/green seeds.
- When these plants produce seeds, he then planted them – these are called hybrids

B. Mendel's Conclusions

- To his surprise, the tall/short crosses did not grow to be medium size plants.
- This is when Mendel said there are factors that control traits called genes.
 - □ Alleles- different forms of a gene
 - Ex. The gene for plant height occurs in tall and short form.

3. Mendel's 2nd conclusion

 He said some alleles are dominant while others are recessive
Recessive alleles are not present when a dominant allele is.

Mendel concluded that tall and yellow alleles were dominant and short and green were recessive.

III. Segregation

- -Mendel wanted to know what happened to the recessive genes so he started breeding them but named them to keep them straight.
- P generation-referred to as the purebreds
- F₁ generation- referred to as the first generation of plants produced by cross-pollination

- C. F_2 generation- these were the offspring of the F_1 generation
- D. Segregation- often many crosses Mendel saw the recessive alleles appear. He questioned the segregation
- E. Punnett Square-Mendel came up with this to describe what plants would appear.
- F. Phenotype- physical characteristics

- G. genotype- genetic makeup
- H. homozygous- homo=same; organism with identical alleles
- I. heterozygous- hetero=different; organism with different alleles

Punnett Square Examples

Example – cross heterozygous tall plants – what are the genotypes and phenotypes?

□ Show example on board

- Example cross a homozygous short plant with a heterozygous tall plant – what are the genotypes and phenotypes?
- □ Show example on board.

IV. Independent Assortment

- Random segregation of different genes.
 - A. Two-Factor Cross
 - 1. In this cross, the two kinds of plants would look like this:
 - □ Round Yellow Seeds RRYY
 - □ Wrinkled Green Seeds rryy

V. Summary of Mendel's Work

- A. The factors that control heredity are individual units known as genes. In organisms that reproduce sexually, genes are inherited from each parent.
- B. In cases in which 2 or more forms of the gene for a single trait exist, some forms of the gene may be dominant & others may be recessive.

C. The 2 forms of each gene are segregated during the formation of reproductive cells.

□ D. The genes for different traits may assort independently of one another.

11-2 Applying Mendel's PrinciplesI. Genetics & Probability

- Probability- the likelihood that a particular event will occur
 - Ex. Flipping a coin, winning lotto, boy or girl
 - Genetics is like probability- the larger the # of organisms examined, the closer the # will get to the expected

II. Using the Punnett Square

One-factor Cross
ex. Cross TT x Tt
-what are the geno/phenotypic ratios?
**write example on board

B. Two-Factor Cross

Green pods (G)smooth pods (N) Yellow pods (g)constricted pods (n)

Ex. Cross a heterozygous for both traits with a plant that has yellow constricted pods. What are the geno/phenotype?

GgNn x ggnn

11-4 Meiosis

This section discusses the formation of gametes. Last year you discussed mitosis (process in which the nucleus of a cell is divided into two nuclei, each with the same number and kinds of chromosomes as the parent cell). Now we will talk about meiosis.

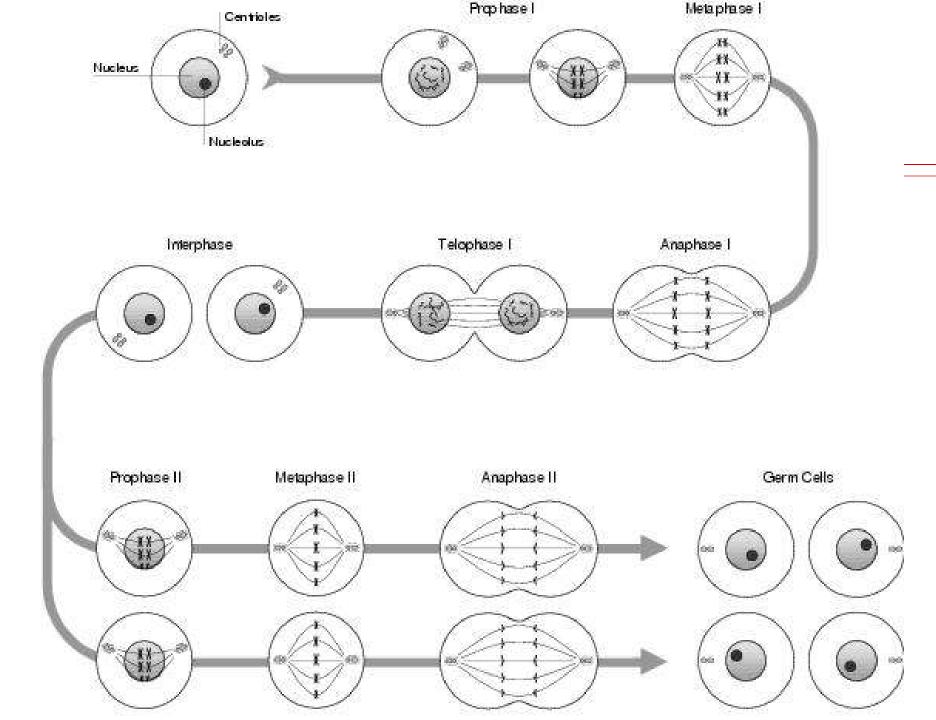
I. Meiosis

Chromosome Number

- 1.Drosophila melanogaster (fruit fly) has 8 chromosomes; 4 from mom and 4 from dad
- homologous- corresponding chromosome- each chromosome in the male has a corresponding female chromosome

- diploid- a cell that contains both sets of homologous chromosomes (one set from each parent)
- (2n) fruit flies 2n=8
- haploid- cells that contain a single set of chromosomes (n)
- fruit fly n=4
- In order to only have ½ the chromosomes a process must take place-meiosis

The Process of Meiosis – making of sperm & egg; only occurs in sex cells


Meiosis I – DNA Replication

- Looks like Mitosis
- Purpose of Meiosis production of haploid gametes.
- Prophase I Homologous chromosomes pair off, forming tetrads and crossing over occurs.
- Metaphase I Tetrads line up in the middle of the cell.

- Anaphase I Cell divides the tetrads and moves the chromosomes to opposite ends.
- Telophase I Wall (plant) or membrane (animal) forms between the cell's two ends. The result is two haploid cells.

Meiosis II

Same as Mitosis except the parent cell is haploid. Refer to pages 276,277 & 246-247.

C. Meiosis vs. Mitosis

Meiosis

Begins with diploid but ends with 4 haploid cells Cells are genetically different Occurs only in sex cells

Mitosis

 Results in genetically identical cells
Begins with a diploid cell and result in 2 diploid daughter cells

