Warm-up Spiral

Write or read over your summary for the notes on "Describing Chemical Reactions" (Pgs. 544 – 548)

If you were absent, begin to write notes now and complete tonight for homework.

Use your notes & write answers to the following:

1. How is a subscript different from a coefficient?

2. How are reactants and products related?

3. How is a chemical equation different from a chemical formula?

1. How is a subscript different from a coefficient?

A subscript is lower and smaller and follows an element's symbol. It represents the number of atoms of that element in a molecule. (O_2)

A coefficient is the number in front of a chemical formula and it shows the number of molecules. (2 NaCl)

- 1. How is a subscript different from a coefficient?
- 2. How are reactants and products related?

Reactants are the materials you start a reaction with and the **products** are the materials you end with.

3. How is a chemical equation different from a chemical formula?

A chemical equation is a short, easy way to show a chemical reaction using symbols.

Na + Cl → NaCl

A chemical formula is a combination of symbols that represent the elements in a compound.

NaCl

Chemical Formulas

NaCl sodium chloride (salt)

H_O dihydrogen oxide(water)

CO_ carbon dioxide

-0		
-0 -0 -0 -0 -0 -0	Chemical formula	A "word" to represent a compound coefficient $3 H_2O$
-0		subscript
F C	Rules for reading hemical formulas	
.9 .9 .9 .9	<u>Rule 1</u> Symbol stands for	CaO 1 atom of calcium
-9 -9 -9 -9	1 atom of that element	1 atom of oxygen
-9 -9 -9		
.0		

Rule 2Subscript showsmore than 1 atomof that element.Subscript tellshow many atomsof that element.

MgCl₂1 atom magnesium 2 atoms chlorine

H₂CO₃2 atoms hydrogen 1 atom carbon

3 atoms oxygen

Rule 3

If a symbol or group of symbols is surrounded by parentheses, MULTIPLY the number of each of the atoms inside the parentheses by the subscript

Ca(NO₃)₂1 atom of calcium 2 atoms of nitrogen 6 atoms of oxygen

<u>Rule 4</u> Coefficient shows # of molecules. No coefficient, only 1 molecule.	3H ₂ O3 molecules of water H ₂ O1 molecule of water

-9

Make the following chart on the left hand page

Chemical Reactions

Formula	# of Molecules	Total # of Atoms for each Element
Example: 3 H ₂ O	3 molecules	H - 6 atoms O - 3 atoms
2 H ₂ SO ₄	2 molecules	H - 4 atoms S - 2 atoms O - 8 atoms
	6	6
	1	1 2
	4	8
	2	2

Balancing Chemical Equations

-0		
-0	Molecule	Combination of 2 or more atoms
-9 -9 -9 -9 -9	Chemical Equation	$Na + Cl \rightarrow NaCl$
-0		reactants product
		beginning materials at
La		materials the end of the
-0		reaction
-9		
6	Law of Conservation	Amount of matter in a
-0	of Mass	chemical reaction does not
-9	01 Triubb	change
6		Change
_0		
-9		Matter is not created or
		destroyed
6		uesuoyeu
-0		
-0		

. Write the equation	$H_2 + Cl_2 \rightarrow HCl$
. Count the number of atomsfor each element of the <u>reactants</u> and each element of the <u>products</u>	$H = 2 Cl = 2 \rightarrow H = 1 Cl = 1$
Add <u>coefficients</u> <u>only</u> to balance	$H_2 + Cl_2 \rightarrow 2HCl$

-9

-0	Example #2	$H_2 + O_2 \rightarrow H_2O$
-0 -0 -0		$H = 2O = 2 \rightarrow H = 2O = 1$
-9	Balanced Equation	$2 H_2 + O_2 \rightarrow 2 H_2O$
-0		
-0 -0 -0		
-9		
-		

-0		
-0		
-0		
-0		
-0		
-0		
-9	Additional Practice	
-9		
-9	Roloncing Equations	
-0	Datations	
-0		
-9	on Overnead	
-9		
-9		
-9		
-9		
-9		
6		
-		
-0		

Classifying Chemical Equations	
1. Synthesis2 or more substances combine	
$> 2SO_2 + O_2 + 2H_2O \rightarrow 2H_2SO_4$	
$(A + B + C \rightarrow ABC)$	
-9	
2. Decompositionbreaking down compounds	
$> 2H_2O_2 \rightarrow 2H_2O + O_2$	
$(AB \rightarrow A + B)$	
-9	
3. Replacement <u>single</u> - 1 element replaces another	
in a compound	
$2CuO + C \rightarrow 2Cu + CO_2$	
$(AB + C \rightarrow A + BC)$	
-9 -9	
double - 2 elements in different	
compounds trade places	
\sim RbBr + AgCl \rightarrow AgBr + RbCl	
$(AB + CD \rightarrow CB + AD)$	

Controlling Chemical Reactions

(Pgs. 237 – 239)

What are the factors affecting rates of chemical	Surface area
reactions?	Temperature
	Concentration
	Catalysts
	Inhibitors