Mathematics Curriculum Map

Sussex Montessori School

The mathematics curriculum is built around several research-based curriculum and standards documents including:

First State Montessori Academy Curriculum Montessori Mathematics Curriculum Albums The National Common Core Standards National Council of Teachers of Mathematics Investigations 3/ Connections Mathematics

Table of Contents

Mathematics Introduction Mathematics Overall Learning Objectives and Transfer Goals K-6 th Grade	pages: 4D-3-4 pages: 4D-5-8
Curriculum Resources and Materials	pages: 4D-8-10
SMS Mathematics Assessments	pages: 4D-11-13
Kindergarten Curriculum	page: 4D-14
Scope and Sequence K Curriculum (Units 1-8)	pages: 4D-15-34
1 st Grade Curriculum	page: 4D-35
Scope and Sequence 1 Curriculum (Units 1-8)	pages: 4D-36-59
2 nd Grade Curriculum	page: 4D-60
Scope and Sequence 2 Curriculum (Units 1-8)	pages: 4D-61-81
3 rd Grade Curriculum	page: 4D-82
Scope and Sequence 3 Curriculum (Units 1-8)	pages: 4D-83-105
4 th Grade Curriculum	page: 4D-106
Scope and Sequence 4 Curriculum (Units 1-8)	pages: 4D-107-129
5 th Grade Curriculum	page: 4D-130
Scope and Sequence 5 Curriculum (Units 1-8)	pages: 4D-131-154
6 th Grade Curriculum	page: 4D-155
Scope and Sequence 6 Curriculum (Units 1-7)	pages: 4D-156-190

Introduction to the Mathematics Curriculum Framework

In the Mathematics Curriculum, the teacher must be knowledgeable about the "Processes and Proficiencies" and have tools to assess when students demonstrate these proficiencies as they work within the various mathematical strands. Teachers also need a clear understanding of the knowledge goals for mathematical thinking within each of strands. The Montessori Mathematics Curriculum Framework provides teachers with the goals for mathematics at each multi-age stage of development (5-7, 7-9, and 9-12-year-old). Early in the school year, teachers use a variety of assessments to determine where children are on the learning continuum in each area. The Curriculum Framework provides the teacher with instructional strategies that are used in small group and individual lessons/units using hands-on Montessori materials, TERC Investigations 3 Mathematics, and other resources to meet the individual instructional needs of the child. These lessons provide opportunities for teachers to observe children and to evaluate their progress towards the goals for learning across each strand of the mathematics curriculum as well as their understanding and demonstration of the processes and proficiencies. The Framework provides various formative and summative assessment tools for teachers to confirm their observations, and to make adjustments to instruction as a result of those observations. These tools include daily

observations, teacher designed assessments, and summative assessments. DIBELS Math assessments are used to identify children who may need to be more closely followed and monitored in the RTI model of assessment/instruction.

The development of the child in Mathematics is embedded within the context of a classroom that supports the best educational practices. It is generally accepted that the workforce of the future will require skills such as creative and innovative thinking, comfort with ideas and abstraction, along with a global worldview and vibrant imagination. Research (Adams, 2005) shows that children develop these skills in classrooms designed to promote intrinsic motivation; to provide choice, time for focus and deep study in areas of interest; to allow opportunities to experiment and discover, and to develop a focus on "What did you learn?" rather than "How well did you do?" The overall Montessori Program is designed to support the following:

 A focus on big ideas and essential questions with extended work periods to allow for depth of understanding and habits of mind.

- Child-centered inclusive learning environments that utilize differentiated instruction and flexible grouping to meet individual children's learning needs.
- Classroom-based assessment and observation that informs instructional decision making as the basis for RTI.
- Hands-on interactive curricular materials and classroom environment supporting children developing from concrete to abstract thinking.

- Academic development supported by an emphasis on the social/emotional development of the child within a multi-age community of learners.
- **Collaborative learning** and **community service** leading to mutual respect of others and the development of the child's **global perspective.**

References

Adams, K. (2005). "Sources of innovation and creativity". A paper commissioned by the National Center on Education and the Economy. Accessed 10/26/2011 at http://www.fpspi.org/Pdf/InnovCreaitivy.pdf.

Montessori, Maria. (1991). *The Advanced Montessori Method: Scientific pedagogy as applied to the education of children from seven to eleven years*. Oxford, England: Clio Press.

Montessori, Maria. (1973). The Advanced Montessori Method: Volume 2. New York: Schocken Books.

	Mathematics Proces	ses and Proficiencies	
This table presents the overall set	t of 'habits of mind" that contribute t	to the development of mathematical	processes and proficiencies. This
table provides an over-arching	g guide to these processes and profic	iencies that will be focused on by SN	1S teachers through the use of
Μ	ontessori Math materials and the Inv	vestigations 3/ Connections Math uni	its.
Mathematically proficient student	ts:		
Make sense of problems and	Reason abstractly and	Construct viable arguments and	Model with mathematics.
persevere in solving them.	quantitatively.	critique the reasoning of	
Explain to themselves the	Make sense of quantities and	others.	Apply the mathematics they know to solve problems
meaning of a problem.	their relationships in problem	Understand and use stated	·
Look for entry points to its	situations.	assumptions, definitions, and	arising in everyday life,
solution.		previously established results	society, and the workplace.
	Bring two complementary		In early grades, this might be as
Analyze givens, constraints,	abilities to bear on problems	in constructing arguments.	simple as writing an addition
relationships, and goals.	involving quantitative	Make conjectures and build a	equation to describe a
Make conjectures about the form	relationships:	logical progression of	situation.
and meaning of the solution.	The ability to <i>decontextualize</i> , to	statements to explore the	Apply what they know.
Plan a solution pathway rather	abstract a given situation and	truth of their conjectures.	Make assumptions and
than simply jumping into a	represent it symbolically and	Analyze situations by breaking	approximations to simplify a
solution attempt.	manipulate the representing	them into cases.	complicated situation,
Consider analogous problems,	symbols as if they have a life	Recognize and use	realizing that these may need
and try special cases and	of their own, without	counterexamples.	revision later.
simpler forms of the original	necessarily attending to their	Justify their conclusions,	Identify important quantities in a
problem in order to gain	referents	communicate them to	practical situation.
insight into its solution.	The ability to <i>contextualize</i> , to	others, and respond to the	Map relationships using such
Monitor and evaluate their	pause as needed during the	arguments of others.	tools as diagrams, two-way
progress and change course	manipulation process in	Make plausible arguments that	tables, graphs, flowcharts
if necessary.	order to probe into the	take into account the context	and formulas.
Explain correspondences	referents for the symbols	from which the data arose,	Analyze relationships
between equations, verbal	involved.	reasoning inductively.	mathematically to draw
descriptions, tables, and	Create a coherent representation	Compare the effectiveness of two	conclusions.
graphs or draw diagrams of	of the problem at hand,	plausible arguments.	Interpret their mathematical

	1	1	
important features and	considering the units	Distinguish correct logic or	results in the context of the
relationships, graph data.	involved.	reasoning from that which is	situation.
Search for regularity or trends.	Attend to the meaning of	flawed, and, if there is a flaw	Reflect on whether the results
Check their answers to problems	quantities, not just how to	in an argument, explain what	make sense, possibly
using a different method.	compute them.	it is.	improving the model if it has
Ask themselves, "Does this make	Know and flexibly use different	Listen to or read the arguments	not served its purpose.
sense?"	properties of operations and	of others, decide whether	
Understand the approaches of	objects.	they make sense.	
others to solving complex		Ask useful questions to clarify or	
problems.		improve arguments.	
Identify correspondences		Construct arguments using	
between different		concrete referents such as	
approaches.		objects, drawings, diagrams,	
Use concrete objects or pictures		and actions. Such arguments	
to help conceptualize and		can make sense and be	
solve a problem. (younger		correct, even though they are	
students)		not generalized or made	
Transform algebraic expressions		formal until later grades.	
or change the viewing		(younger students)	
window on their graphing		Determine domains to which an	
calculator to get the		argument applies. (older	
information they need,		students)	
depending on the context of			
the problem. (older students)			
Mathematically proficient student	ts:		•
· · · · · · · · · · · · · · · · · · ·			
Use Appropriate Tools	Attend to precision.	ok for and make use of structure.	Look for and express regularity
Strategically.	Communicate precisely to	Look closely to discern a pattern	in repeated reasoning.
Consider the available tools when	others.	or structure.	Notice if calculations are
solving a mathematical	Use clear definitions in discussion	Young students might notice that	repeated, and look both for
problem. These tools might	with others and in their own	three and seven more is the	general methods and for

include pencil and paper,	reasoning.	same amount as seven and	shortcuts.
concrete models, a ruler, a	State the meaning of the symbols	three more, or they may sort	Upper elementary students
protractor, a calculator, a	they choose, including using	a collection of shapes	might notice when dividing
spreadsheet, a computer	the equal sign consistently	according to how many sides	25 by 11 that they are
algebra system, a statistical	and appropriately.	the shapes have.	repeating the same
package, or dynamic	Use care to correctly specify units	Later, students will see 7 × 8	calculations over and over
geometry software.	of measure, and label axes to	equals the well-remembered	again, and conclude they
Develop familiarity with tools	clarify the correspondence	$7 \times 5 + 7 \times 3$, in preparation	have a repeating decimal.
appropriate for their grade or	with quantities in a problem.	for learning about the	Apply what they know.
course to make sound	Calculate accurately and	distributive property.	Maintain oversight of the
decisions about when each of	efficiently.	Older students can look at the	problem-solving process,
these tools might be helpful,	Express numerical answers with a	expression 2x + 9x + 14 and	while attending to the
recognizing both the insight	degree of precision	see the 14 as 2 × 7 and the 9	details.
to be gained and their	appropriate for the problem	as 2 + 7.	Evaluate the reasonableness of
limitations. For example,	context.	Recognize the significance of an	their intermediate results.
mathematically proficient	Give carefully formulated	existing line in a geometric	
high school students analyze	explanations to each other.	figure and can use the	
graphs of functions and	(elementary school)	strategy of drawing an	
solutions generated using a	Examine claims and make explicit	auxiliary line for solving	
graphing calculator.	use of definitions. (high	problems.	
Detect possible errors by	school)	Consider an overview and be able	
strategically using estimation		to shift perspective.	
and other mathematical		See complicated things as single	
knowledge.		objects or as being composed	
Know that technology can enable		of several objects.	
them to visualize the results		For example, they can see $5 - 3(x)$	
of varying assumptions,		$(-y)^2$ as 5 minus a positive	
explore consequences, and		number times a square and	
compare predictions with		use that to realize that its	
data.		value cannot be more than 5	
Identify relevant external		for any real numbers <i>x</i> and <i>y</i> .	

Attachment 4D - Math Maps

mathematical resources, such as digital content located on a website, and use them to pose or solve problems. Use technological tools to		
explore and deepen their		
understanding of concepts.		

Curriculum Resources and Materials

There are three resources that will be the foundation for the math curriculum at FSMA.

- Montessori Math Lessons
- TERC Investigations 3 (Grades K-5)
- Connected Mathematics (Grade 6)

Montessori Math Lessons are part of a larger integrated curriculum. This integrated curriculum is founded on the teaching of five "Great Lessons." Relevant to the Math Curriculum articulated in this document is the fifth Great lesson, "The History of Mathematics," also called "The Story of Numbers," which focuses on learning about the numeric system of early civilizations and continuing by looking at the different number systems that have been used and culminates with a study of the decimal system used today. The Fifth Great Lesson: The Story of Numbers leads to the study of:

- Mathematics: operations, fractions, decimals, multiples, squares, cubes, percentages, ration, probability, intro to algebra
- Numbers: origins of numbers and systems, bases, types of numbers, scientific notation, mathematicians
- Geometry: congruency, similarity, nomenclature of lines, angels, shapes, solids, measurement and theorems
- Application: story problems, measurement, estimation, graphs, patterning, rounding, money concepts.

Montessori Math in the Lower Elementary Classrooms: The lower elementary Montessori classroom is full of ongoing discoveries. Spurred on by the telling of the fifth Great Lesson, "the Story of Numbers," children are motivated to

Attachment 4D - Math Maps

Sussex Montessori School

learn about their own number system and uncover the mysteries as did those who came before. The absorbent mind of the early childhood has given way to a reasoning mind which enjoys learning about natural truths and laws of nature. The mathematical facts learned in the younger grades are now tested to see if there are rules and laws to be discovered and manipulated. Patterns are sought as the child seeks to discover the empirical truths of the universe through the use of concrete Montessori math materials. It is now that children are able to use their imaginations to see beyond the immediate. They are able to see beyond the concrete reputations and imagine higher place values in the decimal system.

Montessori math in the upper Elementary Classroom: The inquisitiveness of the upper elementary Montessori student is astounding. The beauty of the advanced squaring and cubing materials beckons like beacons, inviting the students to come explore and learn with them. They dive into the study of fractions and decimals, eager to move beyond to more complex mathematics, geometry, and, algebra. While the concrete materials are still in place, the need for repetition is gone. "Show me. Then, show me more" is the litany of the upper elementary Montessori math students. Upper elementary students move quickly form the concrete experience abstract thought. They are eager to test their knowledge with pencil and paper and need, at times, a gentle reminder to return to the materials as a way of building neurological pathways.

<u>TERC Investigations 3 (k-5th grade</u>) helps students develop a strong conceptual foundation and skills based on that foundation. Each curriculum unit focuses on an area of content and provides opportunities for student to develop and practice e ideas across a variety of activities and contexts that build on each other. The units also address the learning needs of real students in a wide range of classrooms and communities. there are six major goals of the curriculum:

- Support student to make sense of mathematics and learn that they can be mathematical thinking
- Focus on computational fluency with whole numbers as a major goal of elementary grades
- Provide substantive work in important areas of mathematics – rational numbers, geometry, measurement, data, and earl algebra – and connections among them.
- Emphasize reasoning about mathematical ideas
- Communicate mathematics content and pedagogy to teachers
- Engage the range of learners in understanding mathematics

Underlying these goals are three guiding principles that are closely connected to the Montessori philosophy:

- 1. Students have mathematical ideas. The curriculum must support all students in developing and expanding those ideas.
- 2. Teachers are engaged in ongoing earning about mathematics content and how students learn mathematics.
- 3. Teachers collaborate with the students and curriculum materials to create the curriculum as enacted in the classroom. The curriculum must support teachers in implementing it in a way that accommodates the needs of their particular students.

<u>Connected Math (6th grade)</u> is a math curriculum designed for students in grades 6-8. It is a natural extension of the TERC Investigations. Each grade level of the curriculum is a fullyear program and covers numbers, algebra, geometry/measurement, probability, and statistics. The curriculum uses an investigative approach, and students utilize interactive problems and everyday situation to learn math concepts.

SMS Mathematics Assessments

The following tables outline the mathematics assessments that will allow the Sussex Montessori School teacher to collect both formative (F) and summative data (S) on students' progress in mathematics in each age grouping.

Common Core Domain	Smarter Balance	Third Period of Lesson: Ob		TERC Investigations3/ Connections (6 th grade)			DIBELS Math 3 time a year
		Anecdotal Records	Journals	Assessment Checklists	Portfolios	Embedded Benchmark Assessments	
Mathematics Processes and Proficiencies	N/A	x	X	X	Х	x	
Counting and Cardinality	N/A	x	X	X	Х	x	Х
Numbers and Operations in Base 10	N/A	X	x	X	Х	Х	X
Numbers and Operations Fractions	N/A	X	X	X	Х	Х	
Operations/Algebraic Thinking	N/A	x	Х	X	Х	x	Х
Geometry	N/A	Х	Х	X	Х	Х	Х
Measurement and Data	N/A	Х	х	X	Х	Х	Х

K/1 Mathematics Assessments

Common Core Domain	Smarter Balance	Third Period o Lesson: Ob		TERC Investigations3/ Connections (6 th grade)			DIBELS Math 3 time a year
	Anecdotal Records	Journals	Assessment Checklists	Portfolios	Embedded Benchmark Assessments		
Mathematics Processes and Proficiencies	Х	X	Х	X	Х	x	
Numbers and Operations in Base 10	Х	X	X	X	Х	x	Х
Numbers and Operations Fractions	X	x	Х	X	Х	X	
Operations/Algebraic Thinking	Х	x	Х	X	Х	X	Х
Geometry	х	Х	X	X	Х	X	Х
Measurement and Data	х	Х	Х	X	Х	Х	Х

2/3 Mathematics Assessments

4/5/6 Mathematics Assessments

Common Core Domain	SmarterThird Period of MontessoriBalanceLesson: Observation			TERC Investig	DIBELS Math 3 time a year		
		Anecdotal Records	Journals	Assessment Checklists	Portfolios	Embedded Benchmark Assessments	
Mathematics Processes and Proficiencies	Х	х	X	X	Х	X	
Numbers and Operations in Base 10	Х	X	x	x	Х	X	Х
Numbers and Operations Fractions	Х	Х	X	X	Х	X	Х
Operations/Algebraic Thinking	Х	x	X	X	Х	X	Х
Geometry	Х	Х	Х	X	Х	х	Х
Ratios and Proportional Relationships (6 th)		Х	X	X	Х	X	Х
Measurement and Data	х	Х	Х	Х	Х	Х	Х
Statistics and Probability (6 th)	Х	x	X	X	Х	X	Х

Attachment 4D - Math Maps

Sussex Montessori School Mathematics Curriculum Kindergarten

Curriculum Framework for Mathematics

School: <u>Sussex Montessori School</u> Curricular Resources: <u>Montessori Materials and Lessons / Investigations 3</u> Grade: <u>K</u>

Unit One: Counting Timeline: 16 Sessions

Unit Description: In this unit children will explore counting objects, connect number names to the written number, and use numbers to organize and label sets.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
		Learning Targets	Assessments
K.CC.A.1 Count to 100 by ones and by tens.	Count objects and	Essential Questions:	Montessori Materials
	represent quantities with	How can numbers be counted,	Cards and Counters
K.CC.A.3 Write numbers from 0 to 20.	numbers, names, and	read, and written?	Spindle Box (for review)
Represent a number of objects with a written	numerals.	How does counting tell how	Number Rods
numeral 0-20 (with 0 representing a count of		many?	Golden Bead Material
no objects).	Compare and order	How can numbers be	Bead Cabinet
	quantities.	represented?	Teens Board
K.CC.B.4 Understand the relationship between		What are strategies that we	Tens Board
numbers and quantities; connect counting to	Counting is cumulative.	can use to keep track of	Hundred Board
cardinality.		quantities when we count?	
	Counting tells how many	What is the unique vocabulary	Investigations Unit 1 –
K.CC.B.4a When counting objects, say the	are in a set.	related to quantity?	Counting People, Sorting
number names in the standard order, pairing			Buttons
each object with one and only one number	There is a unique	Learning Targets:	
name and each number name with one and	vocabulary that helps	Students will:	Assessments:
only one object.	describe quantities.	• use strategies to accurately	<u>Formative</u>
		count and keep track of	Student Exercises
K.CC.B.4b Understand that the last number	Represent quantities with	quantities up to 10.	 Peer questioning
name said tells the number of objects counted.	pictures, numbers,		Classroom Discussion
The number of objects is the same regardless	objects, and/or words.	• count and compare	Problem Solving
of their arrangement or the order in which they		quantities up to 10.	Challenges
were counted.	Use attributes of objects		Exit Tickets
	to sort them according to		Vocabulary checks
K.CC.B.4c Understand that each successive			

number name refers to a quantity that is one larger.	how they are alike or different.	•	represent quantities with pictures, numbers, objects,	<u>Su</u> •	<u>mmative</u> Montessori Three-
K.CC.B.5 Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects.			or words.	•	Period Lesson including introduction, practice, and assessment of the % of concept mastery. Problem-based interactive Learning activities
K.CC.C.6 Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies.				•	Performance assessment
K.MD.B.3 Classify objects into given categories; count the numbers of objects in each category and sort the categories by count.					

Unit Two: Counting and Measurement **Timeline: 22 Sessions** Unit Description: In this unit, students will further develop counting skills, connect number names and numerals, and develop visual images of quantities up to 10. They will compare and order two or more amounts and describe and measure the length of objects by direct comparison. **Essential Questions/** Instructional Materials/ **Standards Alignment** Unit Concept/Big Ideas Learning Targets Assessments Understanding length Essential Questions: K.CC.A.1 Count to 100 by ones and by tens. Montessori Materials How can we make equivalent Cards and Counters K.CC.A.2 Count forward beginning from a given Number Rods Understanding weight sets? number within the known sequence (instead of How can we use numbers to Golden Bead Material Bead Cabinet having to begin at 1). Counting and representing represent quantities? quantities How can we determine what **Teens Board** K.CC.A.3 Write numbers from 0 to 20. has more? Tens Board Represent a number of objects with a written What is length? Hundred Board numeral 0-20 (with 0 representing a count of What is weight? Investigations Unit 2 no objects). **Counting Quantities**, Learning Targets: K.CC.B.4 Understand the relationship between Students will: **Comparing Lengths** numbers and quantities; connect counting to count and count out a set cardinality. of objects up to 10 objects. Assessments: Formative K.CC.B.4a When counting objects, say the Students will compare two Student Exercises number names in the standard order, pairing quantities up to 10 to Peer questioning ٠ each object with one and only one number determine which is greater. Classroom Discussion ٠ name and each number name with one and Problem Solving • only one object. Describe length and decide Challenges ٠ which of two objects is Exit Tickets • K.CC.B.4b Understand that the last number longer. Vocabulary checks • name said tells the number of objects counted. The number of objects is the same regardless Summative of their arrangement or the order in which they

 were counted. K.CC.B.4c Understand that each successive number name refers to a quantity that is one larger. K.CC.B.5 Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects. 	 Montessori Three- Period Lesson including introduction, practice, and assessment of the % of concept mastery. Problem-based interactive Learning activities Performance assessment
K.CC.C.6 Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies.	
K.CC.C.7 Compare two numbers between 1 and 10 presented as written numerals.	
K.MD.A.2 Directly compare two objects with a measurable attribute in common, to see which object has "more of"/"less of" the attribute, and describe the difference. For example, directly compare the heights of two children and describe one child as taller/shorter.	
K.MD.B.3 Classify objects into given categories; count the numbers of objects in each category	

and sort the categories by count.		

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/ Learning Targets	Instructional Materials/ Assessments
K.G.A.1 Describe objects in the environment	Describing, identifying,	Essential Questions:	Montessori Materials
using names of shapes, and describe the relative positions of these objects using terms	and comparing 2-D shapes	What are 2-D shapes? What are attributes?	Geometry Cabinet Constructive Triangle Boxes
such as above, below, beside, in front of, behind, and next to.	Composing and decomposing 2-D shapes	What are the attributes of curved shapes? What are the attributes of rectangles, squares, triangles,	Insets 3-Part Cards Investigations Unit 3 –
K.G.A.2 Correctly name shapes regardless of their orientations or overall size.		What shapes can I make with other shapes?	Make a Shape, Fill a Hexagon
K.G.A.3 Identify shapes as two-dimensional (lying in a plane, "flat") or three-dimensional ("solid").		What shapes do I see around me?	Assessments: Formative • Student Exercises
K.G.B.4 Analyze and compare two- and three dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/"corners") and other		 Students will: Identify and describe the overall size, shape, and features of familiar 2-D shapes. 	 Peer questioning Classroom Discussion Problem Solving Challenges Exit Tickets Vocabulary checks
attributes (e.g., having sides of equal length).		Make 2-D shapes.	<u>Summative</u>
K.G.B.5 Model shapes in the world by building shapes from components (e.g., sticks and clay balls) and drawing shapes.		Combine smaller shapes to make larger shapes.	 Montessori Three- Period Lesson including introduction, practice, and assessment of the of concept mastery.

K.G.B.6 Compose simple shapes to form larger shapes. For example, "Can you join these two triangles with full sides touching to make a rectangle?"	 Find combinations of shapes that fill a region. Describe 2-D shapes by Performance
	 their attributes. assessment Identify 2-D shapes in their environments.

Unit Four: Counting and Measurement 2Timeline: 23 SessionsUnit Description: In this unit, students will focus on counting and representing sets of up to 15 objects, using counting skills, decomposing
numbers in many ways, and beginning to make sense of the operations of addition and subtraction.

Unit Concept/Big Ideas	Essential Questions/ Learning Targets	Instructional Materials/ Assessments
Counting and representing	Essential Questions:	Montessori Materials
quantities	How do we represent	Golden Bead Material
	quantities over 10?	Bead Cabinet
Comparing and ordering	How do we make an equivalent	Teens Board
quantities	set and represent the quantity	Tens Board
	for a given number?	Hundred Board
Collecting, representing,	How can we keep track of	A variety of counters
describing, and	growing sets of objects?	
interpreting data		Investigations Unit 4 –
	Learning Targets:	Collect, Count, and
	Students will:	Measure
	• Count and count out a set	
	of up to 15 objects.	Assessments:
		<u>Formative</u>
	• Make a set of a given size.	Student Exercises
		Peer questioning
	• Use numbers to represent	Classroom Discussion
	measurements and	Problem Solving
	quantities.	Challenges
	•	Exit Tickets
	• Record an arrangement of	Vocabulary checks
	e e	
	, ,	Summative
		Montessori Three-
		Period Lesson including
	Counting and representing quantities Comparing and ordering quantities Collecting, representing, describing, and	Learning TargetsCounting and representing quantitiesEssential Questions: How do we represent quantities over 10?Comparing and ordering quantitiesHow do we make an equivalent set and represent the quantity for a given number?Collecting, representing, describing, and interpreting dataHow can we keep track of growing sets of objects?Learning Targets: Students will:Learning Targets: Students will:•Make a set of a given size.•Use numbers to represent measurements and quantities.

The number of objects is the same regardless of their arrangement or the order in which they were counted.	 Establish one-to-one correspondence between equal groups. 	 introduction, practice, and assessment of the % of concept mastery. Problem-based
K.CC.B.4c Understand that each successive		interactive Learning
number name refers to a quantity that is one		activities
larger.		 Performance assessment
K.CC.B.5 Count to answer "how many?"		
questions about as many as 20 things arranged		
in a line, a rectangular array, or a circle, or as		
many as 10 things in a scattered configuration;		
given a number from 1–20, count out that		
many objects.		
K.CC.C.6 Identify whether the number of		
objects in one group is greater than, less than,		
or equal to the number of objects in another		
group, e.g., by using matching and counting		
strategies.		
K.OA.A.1 Represent addition and subtraction		
with objects, fingers, mental images, drawings,		
sounds (e.g., claps), acting out situations,		
verbal		
explanations, expressions, or equations.		
K.OA.A.2 Solve addition and subtraction word		
problems, and add and subtract within 10, e.g.,		
by using objects or drawings to represent the		
problem.		

K.OA.A.3 Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., $5 = 2 + 3$ and $5 = 4 + 1$).		
K.OA.A.5 Fluently add and subtract within 5.		
K.MD.A.1 Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object.		
K.MD.B.3 Classify objects into given categories; count the numbers of objects in each category and sort the categories by count.		

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
K.G.A.1 Describe objects in the environment	Describing, identifying,	Learning Targets Essential Questions:	Assessments Montessori Materials
using names of shapes, and describe the relative positions of these objects using terms such as <i>above</i> , <i>below</i> , <i>beside</i> , <i>in front of</i> , <i>behind</i> , and <i>next to</i> .	and comparing 3-D shapes Composing and decomposing 3-D shapes	What are the attributes of cones, cylinders, spheres, prisms, cubes, ellipsoids, and ovoids? How do 3-D shapes relate to	Golden bead material Geometry Cabinet Insets Geometric Solids 3-Part Cards
K.G.A.2 Correctly name shapes regardless of their orientations or overall size.	Comparing and contrasting 2-D and 3-D shapes	real-world objects? How are 2-D and 3-D shapes alike and different? How can 3-D shapes be used to	Investigations Unit 5 – Build a Block, Build a Wall
 K.G.A.3 Identify shapes as two-dimensional (lying in a plane, "flat") or three-dimensional ("solid"). K.G.B.4 Analyze and compare two- and three dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/"corners") and other attributes (e.g., having sides of equal language to 		 make different 3-D shapes? <u>Learning Targets:</u> Students will: Identify and describe the overall size, shape, and features of familiar 3-D shapes. Make 3-D shapes. 	Assessments:FormativeStudent ExercisesPeer questioningClassroom DiscussionProblem SolvingChallengesExit TicketsVocabulary checks
length). K.G.B.5 Model shapes in the world by building shapes from components (e.g., sticks and clay balls) and drawing shapes.		 Combine shapes to make 3- D shapes. Understand words that describe relative position. 	 <u>Summative</u> Montessori Three- Period Lesson including introduction, practice, and assessment of the %

K.G.B.6 Compose simple shapes to form larger	•	Problem-based
shapes. For example, "Can you join these two		interactive Learning
triangles with full sides touching to make a		activities
rectangle?"	•	Performance
		assessment

Unit Six: Addition, Subtraction, and the Number System 1Timeline: 20 SessionsUnit Description: In this unit, students have repeated opportunities and experiences with join two or more amounts, remove and amountfrom the whole, and think of a number as being composed of two parts.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
		Learning Targets	Assessments
K.CC.A.1 Count to 100 by ones and by tens.	Understanding,	Essential Questions:	Montessori Materials
	representing, and solving	How do we accurately count	100 Board
K.CC.A.3 Write numbers from 0 to 20.	addition and subtraction	and keep track of quantities up	Bead bars
Represent a number of objects with a written	problems.	to 20?	Addition strip board
numeral 0-20 (with 0 representing a count of		How can we use numbers,	Addition finger charts
no objects).	Combining two numbers	pictures, words, and/or	Subtraction strip board
	(0-10), with totals to 20.	addition notation to represent	Subtraction finger charts
K.CC.B.4 Understand the relationship between		a quantity?	Bead Cabinet
numbers and quantities; connect counting to	Representing and solving	How can we compare	A variety of counting objects
cardinality.	addition and subtraction	quantities to 20 to determine	
	story problems with result	which is greater?	Investigations Unit 6 – How
K.CC.B.4a When counting objects, say the	unknown.		Many Now?
number names in the standard order, pairing		Learning Targets	-
each object with one and only one number	Decomposing numbers to	Students will:	Assessments:
name and each number name with one and	6 into two or more	Students will write	<u>Formative</u>
only one	addends.	numbers to 10.	Student Exercises
object.		• Figure out what is one	 Peer questioning
	Using numbers, pictures,	more or lone less than a	Classroom Discussion
K.CC.B.4b Understand that the last number	words, and/or	number.	 Problem Solving
name said tells the number of objects counted.	addition/subtraction	Represent and solve	Challenges
The number of objects is the same regardless	notation to represent a	addition story problems	Exit Tickets
of their arrangement or the order in which they	solution to a problem	within 10.	 Vocabulary checks
were counted.	-	 Decompose a number into 	
		two addends in more than	Summative
K.CC.B.4c Understand that each successive		one way.	Summative

number name refers to a quantity that is one larger. K.CC.B.5 Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects. K.CC.C.6 Identify whether the number of objects in one group is greater than, less than,	 Montessori Three- Period Lesson including introduction, practice, and assessment of the % of concept mastery. Problem-based interactive Learning activities Performance assessment
or equal to the number of objects in another group, e.g., by using matching and counting strategies.	
K.OA.A.1 Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations.	
K.OA.A.2 Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.	
K.OA.A.3 Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., $5 = 2 + 3$ and $5 = 4 + 1$).	

K.OA.A.5 Fluently add and subtract within 5.		

Unit Seven: Modeling with Data Timelin	ne: 15 Sessions			
Unit Description: In this unit, student will describ	e attributes of objects and da	ata, use this information to sort, cla	assify, count, order, compare,	
and represent dates, and use this date to model real-world problems with mathematics.				
Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/	
		Learning Targets	Assessments	
K.CC.A.1 Count to 100 by ones and by tens.	Sorting and classifying	Essential Questions	Montessori Materials	
		How can we count and keep	Attribute blocks	
K.CC.A.3 Write numbers from 0 to 20.	Collecting, representing,	track of quantities?	100 board	
Represent a number of objects with a written	describing, and	Can we find a total of up to 6	Golden bead material	
numeral 0-20 (with 0 representing a count of	interpreting data	small quantities?		
no objects).		Can we count by groups of 2?	Investigations Unit 7 – How	
	Comparing and ordering	Can we count by groups of 10?	Many Noses? How Many	
K.CC.B.4 Understand the relationship between	quantities	Can we establish the one-to-	Eyes?	
numbers and quantities; connect counting to		one correspondence between a		
cardinality.	Counting and representing	set of data and a	Assessments:	
	quantities	representation of this data set?	<u>Formative</u>	
K.CC.B.4a When counting objects, say the			 Student Exercises 	
number names in the standard order, pairing	There are various ways to	Learning Targets	 Peer questioning 	
each object with one and only one number	collect, represent,	Students will:	Classroom Discussion	
name and each number name with one and	describe and interpret	 Sort a set of objects by a 	 Problem Solving 	
only one object.	data.	given attribute and order	 Challenges 	
		the groups based on the	Exit Tickets	
K.CC.B.4b Understand that the last number		number in each.	Vocabulary checks	
name said tells the number of objects counted.				
The number of objects is the same regardless		Use data to represent and	Summative	
of their arrangement or the order in which they		solve a real-world problem.	Montessori Three-	
were counted.			Period Lesson including	
			introduction, practice,	
K.CC.B.4c Understand that each successive			and assessment of the %	
number name refers to a quantity that is one larger.			of concept mastery.	

K.CC.B.5 Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects.		 Problem-based interactive Learning activities Performance assessment
K.CC.C.6 Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies.		
K.OA.A.1 Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations.		
K.OA.A.2 Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.		
K.MD.B.3 Classify objects into given categories; count the numbers of objects in each category and sort the categories by count.		

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/ Learning Targets	Instructional Materials/ Assessments
K.CC.A.1 Count to 100 by ones and by tens.	Understanding, representing, and solving	Essential Questions Can we make a set and	<u>Montessori Materials</u> Golden bead material
K.CC.A.2 Count forward beginning from a given number within the known sequence (instead of having to begin at 1).K.CC.A.3 Write numbers from 0 to 20.Represent a number of objects with a written	addition and subtraction problems Understanding that the value of a number is dependent on its position	represent the quantity equivalent to a given expression? Can we recognize, identify, and write the teen numbers? How can use a group of ten	Stamp Game Hundred Board Million Cube Teens board Tens board Addition strip board
numeral 0-20 (with 0 representing a count of no objects).	in a number	ones and some number of ones to represent a teen number? Can we count groups of 10?	Addition finger charts Teacher-made materials including 10-frames
K.CC.B.4 Understand the relationship between numbers and quantities; connect counting to cardinality.		How can we use addition notation to represent the teen numbers as 10 plus some number of ones?	Investigations Unit 8 – Ten Frames and Teen Numbers
K.CC.B.4a When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object.		 <u>Learning Targets:</u> Students will: Write numbers to 20. Count by 1s and 10s to 100; 	Assessments: Formative Student Exercises Peer questioning Classroom Discussion Problem Solving
K.CC.B.4b Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted.		when counting by 1s, start from a number other than 1.	 Challenges Exit Tickets Vocabulary checks

Unit Fight: Addition Subtraction and the Number System 2 Timeline: 22 Sessions

 K.CC.B.5 Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects. K.CC.C.6 Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies. K.OA.A.1 Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. K.OA.A.2 Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. K.OA.A.3 Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., 5 = 2 + 3 and 5 = 4 + 1). K.OA.A.4 For any number from 1 to 9, find the 		 Add and subtract fluently within 5. Figure out a missing addend when the sum is 10. Represent the teen numbers as ten 1s and some number of 1s. Represent and solve subtraction story problems within 10, with result unknown. 	 Montessori Three- Period Lesson including introduction, practice, and assessment of the % of concept mastery. Problem-based interactive Learning activities Performance assessment
---	--	---	--

number that makes 10 when added to the given number, e.g., by using objects or drawings, and record the answer with a drawing or equation.		
K.OA.A.5 Fluently add and subtract within 5. K.NBT. A.1 Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (e.g., 18 = 10 + 8); understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones.		

Attachment 4D - Math Maps

Sussex Montessori School Mathematics Curriculum 1st Grade

Curriculum Framework for Mathematics

School: <u>Sussex Montessori School</u> Curricular Resources: <u>Montessori Materials and Lessons / Investigations</u> <u>3</u> Grade: <u>1</u>

Unit One: Number and Operations Timeline: 20 Sessions

Unit Description: In this unit students extend their understanding of counting and the number sequence, and build a strong foundation for their work

with place value and the operations of addition and subtraction.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
		Learning Targets	Assessments
1.OA.A.1	Counting forward and	Essential Questions	Montessori Materials
Use addition and subtraction within	backward can begin from	How can numbers to 1,000 be	100 board
20 to solve word problems involving situations of adding to, taking from, putting together,	any number.	read and written?	Colored bead bars
taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings,	Number lines can be used as a tool for counting.	What does each digit in a 2- digit number designate?	Addition and subtraction snake games
and equations with a symbol for the unknown number to represent the problem. 1.OA.B.3	Counting tells how many are in a set and numbers represent a set of objects.	How can we use symbols compare two 2-digit quantities?	Teacher-made materials for greater than, less than, and equal to
Apply properties of operations as strategies to add and subtract. Examples: If 8+3=11 is known, then 3+8=11 is also known. (Commutative property of	A teen number is a group of ten ones and some number of ones	How can we count by groups of 2, 5, or 10?	Teacher-made materials for missing addends and subtrahends
addition.) To add 2+6+4, the second two	The first numeral in a 2-	How can we use the 100 board	Bead cabinet
numbers can be added to make a ten, so 2+6+4=2+10=12. (Associative property of	digit number designates	to find patterns of numbers?	Teens board
addition.)	given quantity.	<u>Learning Targets</u> Students will:	Tens Board
1.OA.B.4	The first digit of a 2-digit	Understand ten ones as	Number lines
Understand subtraction as an unknown-addend	number designates the	one ten, and a teen	Investigations Unit 1 –
problem. For example, subtract 10-8 by finding	number of groups of 10	numbers as one ten	Building Numbers and
the number that makes 10 when added to 8.	and the second digit		Solving Story Problems

	designates the number of	and some number of	
1.0A.C.5	ones	ones.	Assessments
Relate counting to addition and subtraction	ones		Formative
(e.g., by counting on 2 to add 2).1.OA.C.6Add and subtract within 20, demonstrating fluency for addition and subtraction within 10.	Two quantities can be compared to see which is greater. A 100 chart is a representation of the	 Rote count, read, and write numbers to 1,000. Understand that the 	 Student Exercises Peer questioning Classroom Discussion Problem Solving
Use strategies such as counting on; making ten (e.g., 8+6=8+2+4=10+4=14); decomposing a number leading to a ten (e.g., 13-4=13-3-1=10- 1=9); using the relationship between addition	counting numbers 1 to 100.	multiples of 10 through 90 refer to 1 – 9 tens and 0 ones.	ChallengesExit TicketsVocabulary checks
 and subtraction (e.g., knowing that 8+ 4=12, one knows 12-8=4); and creating equivalent but easier or known sums (e.g., adding 6+7by creating the known equivalent 6+6+1=12+1=13). 1.OA.D.7 Understand the meaning of the 		 Use a numeral to represent a number of objects organized into tens and ones and, given a numeral, represent it with tens and ones. 	 Montessori Three- Period Lesson including introduction, practice, and assessment of the %
equal sign, and determine if equations involving addition and subtraction are true or false. For example, which of the following equations are true and which are false? 6=6, 7=8-1,5+2=2+5, 4+1=5+2.		 Use standard notation (<, >) to represent the comparison of two 2- digit numbers. 	 of concept mastery. Problem-based interactive Learning activities Performance
1.OA.D.8 Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. For example, determine the		 Add or subtract 10 to/from any 2-digit number. 	• assessment

unly any supplier that walks the sound is the		
unknown number that makes the equation true		
in each of the equations $8+?=11, 5=\Box-3, 6+6=\Box$		
1.NBT.A.1		
Count to 120, starting at any number		
less than 120. In this range, read and write		
numerals and represent a number of objects		
with a written numeral.		
1.NBT.B.2a		
10 can be thought of as a bundle of ten ones—		
-		
called a "ten."		
1.NBT.B.2b		
The numbers from 11 to 19 are composed of a		
ten and one, two, three, four, five, six, seven,		
eight, or nine ones.		
1.NBT.B.2c		
The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90		
refer to one, two, three, four, five, six, seven,		
eight, or nine tens (and 0 ones).		
1.NBT.B.3		
Compare two two-digit numbers based on		
meanings of the tens and ones digits, recording		
the results of comparisons with the symbols		
7, =, and 6.		
1.NBT.C.4		

Add within 100, including adding a two-digit		
number and a one-digit number, and adding a		
two-digit number and a multiple of 10, using		
concrete models or drawings and strategies		
based on place value, properties of operations,		
and/or the relationship between addition and		
subtraction; relate the strategy to a written		
method and explain the reasoning used.		
Understand that in adding two-digit numbers,		
one adds tens and tens, ones and ones; and		
sometimes it is necessary to compose a ten.		
1.NBT.C.5		
Given a two-digit number, mentally find 10		
more or 10 less than the number, without		
having to count; explain the reasoning used.		
1.NBT.C.6		
Subtract multiples of 10 in the range 10–90		
from multiples of 10 in the range 10–90		
(positive or zero differences), using concrete		
models or drawings and strategies based on		
place value, properties of operations, and/or		
the relationship between addition and		
subtraction; relate the strategy to a written		
method and explain the reasoning used.		
	l	

dimensional geometric shapes. Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
Ū.		Learning Targets	Assessments
1.MD.A.1	2- and 3-D shapes have	Essential Questions	Montessori Materials
Order three objects by length; compare the	common attributes.	What language can we use to	Geometry cabinet
lengths of two objects indirectly by using a		describe 2- and 3-D shapes?	Attribute blocks
third object.	Geometric language helps		Constructive Triangle boxes
	us describe geometric	What are the attributes of 2-D	Solid geometric shapes
1.MD.A.2	shapes.	shapes?	3-part cards
Express the length of an object as a whole			Insets
number of length units, by laying multiple	Shapes can be composed	What are the attributes of 3-D	
copies of a shorter object (the length unit) end	of or decomposed into	shapes?	Investigations Unit 2 –
to end; understand that the length	different shapes.		Comparing and Combining
measurement of an object is the number of		How can we use 2-D shapes to	Shapes
same-size length units that span it with no gaps	There are many types of	create other 2-D shapes?	
or overlaps. Limit to contexts where the object	quadrilaterals.		<u>Assessments</u>
being measured is spanned by a whole number		What are the common	<u>Formative</u>
of length units with no gaps or overlaps.		attributes of 2- and 3-D	 Student Exercises
		shapes?	 Peer questioning
1.MD.B.3			Classroom
Tell and write time in hours and half-hours		What is a quadrilateral?	Discussion
using analog and digital clocks.			 Problem Solving
		Learning Targets	Challenges
1.MD.C.4		Students will:	Exit Tickets
Organize, represent, and interpret data with up		Compose and	Vocabulary checks
to three categories; ask and answer questions		decompose shapes in	,
about the total number of data points, how		different ways.	Summative
many in each category, and how many more			Montessori Three-
or less are in one category than in another.			

 1.G.A.1 Distinguish between defining attributes (e.g., triangles are closed and three-sided) versus non-defining attributes (e.g., color, orientation, overall size); build and draw shapes to possess defining attributes. 1.G.A.2 Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or three-dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape. 	 Build and draw familiar 2-D shapes. Use geometric language to describe and identify important attributes, and use those attributes to sort familiar 2-D shapes. Use geometric language to describe and identify defining attributes of familiar 3- D shapes 	 Period Lesson including introduction, practice, and assessment of the % of concept mastery. Problem-based interactive Learning activities Performance assessment
 1.G.A.2 Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or three-dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape. 1.NBT.B.3 Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols 7, =, and 6. 	 Compose 3-D shapes. Match a 2-D representation of a 3-D shape to the outline of one of its faces. 	

1.NBT.C.5		
Given a two-digit number, mentally find 10		
more or 10 less than the number, without		
having to count; explain the reasoning used.		
1.MD.B.3		
Tell and write time in hours and half-hours		
using analog and digital clocks.		

Unit Three: Addition, Subtraction, and the Number System 2 Timeline: 26 Sessions Unit Description: In this unit, student will focus on counting on and back as a strategy for adding/subtracting, on composing and decomposing numbers into two or more parts, on adding more than two numbers, on expanding understanding of addition and subtraction notation, and on counting and comparing larger quantities.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
		Learning Targets	Assessments
1.0A.A.1	The equals sign represents	Essential Questions	Montessori Materials
Use addition and subtraction within 20 to solve	equivalence and is used to	Does the order of addends	Addition and subtraction
word problems involving situations of adding	show equivalent	matter to the sum?	snake games
to, taking from, putting together, taking apart,	expressions.		Colored bead bars
and comparing, with unknowns in all positions,		How does counting on or	Golden bead material
e.g., by using objects, drawings, and equations	Counting on or counting	counting back help in solving	Teacher-made materials for
with a symbol for the unknown number to	back can be used as a	an addition or subtraction	greater than/less than
represent the problem.	strategy for adding or subtracting two numbers.	problem?	Number lines
1.0A.A.2		How can we determine	Investigations Unit 3 – How
Solve word problems that call for addition of	The order of addends	equivalence?	Many of Each? How Many
three whole numbers whose sum is less than or	does not affect the total.		in All?
equal to 20, e.g., by using objects, drawings,		How can number patterns help	
and equations with a symbol for the unknown	A 100 chart is a	us?	Assessments
number to represent the problem.	representation of the		<u>Formative</u>
	counting numbers from 1	Learning Targets	 Student Exercises
1.OA.B.3	to 100.	Students will:	 Peer questioning
Apply properties of operations as strategies to		Find at least 5 solutions	Classroom
add and subtract. Examples: If 8+3=11is known,	A teen number is a group	to put together/take	Discussion
then 3+8=11 is also known. (Commutative	of ten and some number	apart problem with	 Problem Solving
property of addition.) To add 2+6+4, the	of ones.	both addends	Challenges
second two numbers can be added to make a		unknown.	Exit Tickets
ten, so 2+6+=2+10=12. (Associative property of			Vocabulary checks
addition.)		 Solve story problems 	
		with 3 addends.	<u>Summative</u>

1.OA.B.4		Montessori Three-
Understand subtraction as an unknown-addend	Represent numbers	Period Lesson
problem. For example, subtract 10-8 by finding	with equivalent	including
the number that makes 10 when added to 8.	expressions.	introduction,
		practice,
1.OA.C.5	 Find at least 5 solutions 	and assessment of
Relate counting to addition and subtraction	to a put together/take	the %
(e.g., by counting on 2 to add 2).	apart problem with	of concept mastery.
	both addends	 Problem-based
1.OA.C.6	unknown.	interactive Learning
Add and subtract within 20, demonstrating		activities
fluency for addition and subtraction within 10.	Solve story problems	 Performance
Use strategies such as counting on; making ten	with 3 addends.	assessment
(e.g., 8+6=8+2+4=10+4=14); decomposing a		
number leading to a ten (e.g., 13-4=13-3-1=10-	Represent numbers	
1=9); using the relationship between addition	with equivalent	
and subtraction (e.g., knowing that 8+4=12,	expressions.	
one knows 12-8=4); and creating equivalent	·	
but easier or known sums (e.g., adding 6+7 by	 Understand that you 	
creating the known equivalent 6+6+1=12+1=	can count on/back to	
13).	add/subtract.	
1.OA.D.7	Rote count, read, and	
Understand the meaning of the equal sign, and	write numbers to	
determine if equations involving addition and	1,000.	
subtraction are true or false. For example,	1,000.	
which of the following equations are true and		
which are false? 6=6, 7=8-1,5+2=2+5, 4+1=5+2.		
1.OA.D.8		

Determine the unknown whole number in an		
addition or subtraction equation relating three		
whole numbers. For example, determine the		
unknown number that makes the equation true		
in each of the equations $8+?=11, 5=\Box-3,$		
6+6=□.		
1.NBT.A.1		
Count to 120, starting at any number less than		
120. In this range, read and write numerals and represent a number of objects with a written		
numeral.		
numerai.		
1.NBT.B.2.a		
10 can be thought of as a bundle of ten ones—		
called a "ten."		
1.NBT. B.2b		
The numbers from 11 to 19 are composed of a		
ten and one, two, three, four, five, six, seven,		
eight, or nine ones.		
1.NBT. B.2c		
The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90		
refer to one, two, three, four, five, six, seven,		
eight, or nine tens (and 0 ones).		
1.NBT.B.3		
Compare two two-digit numbers based on		
meanings of the tens and ones digits,		
recording the results of comparisons with the		

symbols 7, =, and 6.		
1.MD.B.3		
Tell and write time in hours and half-hours		
using analog and digital clocks.		

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
		Learning Targets	Assessments
1.OA.A.1	A whole can be	Essential Questions	Montessori Materials
Use addition and subtraction within 20 to solve	partitioned into equal	How can we solve comparison	Fraction Insets
word problems involving situations of adding	parts.	story problems with the	Fraction box
to, taking from, putting together, taking apart,		difference unknown?	Bead box
and comparing, with unknowns in all positions,	Equal parts of a whole can		Teacher-made materials for
e.g., by using objects, drawings, equations with	be described as halves,	How can we use numbers,	missing addends and
a symbol for the unknown number to represent	fourths or quarters.	pictures, words, and/or	subtrahends
the problem.		notation to represent a	Teacher-made materials for
	When a whole is cut into	solution to a problem?	greater than/less than
1.OA.B.3	fractional pieces, the		Measurement materials
Apply properties of operations as strategies to	pieces are smaller.	How can we describe equal	Clock matching materials
add and subtract. Examples: If 8+3=11 is		parts of a whole?	
known, then 3+8=11 is also known	Length can be quantified		Investigations Unit 4 – Fish
(Commutative property of addition.) To add	by repeating identical,	How can we accurately	Lengths and Fraction Rugs
2+6+4, the second two numbers can be added	multiple units from one	measure an object or length?	
to make a ten, so 2+6+4=2+10=12. (Associative	end of an object to the		<u>Assessments</u>
property of addition.)	other with no gaps or	Will two people measuring the	<u>Formative</u>
	overlaps.	same length or object get the	Student Exercises
1.OA.B.4		same measurement?	Peer questioning
Understand subtraction as an	Inch tiles can be used to		Classroom
unknown-addend problem.	measure objects.	Learning Targets	Discussion
For example, subtract 10-8 by finding the		Students will:	Problem Solving
number that makes 10 when added to 8.	Measurements of the	Solve comparison	Challenges
	same lengths are the	problems	Exit Tickets
1.OA.C.6	same when they are	with the difference	Vocabulary checks
	measured twice or by	unknown (how many	

Add and subtract within 20, demonstrating	different people using the	more, and how many	Summative
fluency for addition and subtraction within 10.	same unit of measure.	fewer).	Montessori Three-
Use strategies such as counting on; making ten		/	Period Lesson
(e.g., 8+6=8+2+4=10+4=14); decomposing a		Solve comparison	including
number leading to a ten (e.g., 13-4=13-3-1=10-		problems with the	introduction,
1=9); using the relationship between addition		difference unknown	practice,
and subtraction (e.g., knowing that 8+		(how many more, and	and assessment of
4=12, one knows 12-8=4); and creating		how many fewer).	the %
equivalent but easier or known sums (e.g.,		, ,	of concept mastery.
adding 6+7by creating the known equivalent		• Solve comparison	Problem-based
6+6+1=12+1=13).		problems	interactive Learning
		with the difference	activities
1.MD.A.1		unknown (how many	Performance
Order three objects by length; compare the		more, and how many	assessment
lengths of two objects indirectly by using a		fewer).	
third object.			
		• Compare the lengths of	
1.MD.A.2		two	
Express the length of an object as a		objects indirectly by	
whole number of length units, by laying		using a third length.	
multiple copies of a shorter object (the length			
unit) end to end; understand that the length		Demonstrate accurate	
measurement of an object is the number of		measuring techniques	
same-size length units that span it with no gaps		when measuring an	
or overlaps. Limit to contexts where the object		object or distance with	
being measured is spanned by a whole number		multiples units. These	
of length units with no gaps or overlaps.		techniques include	
		starting at the	
1.MD.B.3		beginning, ending at	
Tell and write time in hours and half-hours		the end, leaving no	
using analog and digital clocks.		gaps or overlaps,	

 1.G.A.2 Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half- circles, and quarter-circles) or three- dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape. 1.G.A.3 Partition circles and rectangles into two and four equal shares, describe the shares using the words halves, fourths, and quarters, and use the phrases half of, fourth of, and quarter of. Describe the whole as two of, or four of the shares. Understand for these examples that decomposing into more equal 	 measuring in a straight line, and keeping track of the number of units. Tell time to the hour and half hour. Understand that halves or fourths (quarters) apply to wholes divided into two (four) equal parts; partition circles and rectangles into two and four equal parts.
examples that decomposing into more equal shares creates smaller shares.	

Unit Description: In this unit, student focus on developing fluency with addition and subtraction with 10, including the 2-addend combinations of 10, understanding the meaning of the equal sign as a symbol of equivalence, and finding an unknown addend or unknown change.				
Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/	
		Learning Targets	Assessments	
1.OA.A.1	The equal sign represents	Essential Questions	Montessori Materials	
Use addition and subtraction within	equivalence.	How can we determine		
20 to solve word problems involving situations		equivalence?	Teacher-made materials for	
of adding to, taking from, putting together,	A teen number is a group		missing addends and	
taking apart, and comparing, with unknowns	of ten plus some number	How can we determine if	subtrahends	
in all positions, e.g., by using objects, drawings,	of ones.	equations are true or false?	Addition and subtraction	
and equations with a symbol for the unknown			snake games	
number to represent the problem.	There are many strategies	How can we use 5 + 5 to reason	Bead bars	
	for solving put	about other combinations of		
1.OA.B.3	together/take apart story	10?	Investigations Unit 5 –	
Apply properties of operations as	problems.		Number Games and Crayon	
strategies to add and subtract.		Does order matter in addition?	Problems	
Examples: If 8+3=11 is known, then 3+8=11 is	Numbers, pictures, words,			
also known. (Commutative property of	and/or notation may be	How can we solve problems	<u>Assessments</u>	
addition.) To add 2+6+4, the second two	used to represent a	with one, tow, or more	<u>Formative</u>	
numbers can be added to make a ten, so	solution to a problem.	addends unknown?	Student Exercises	
2+6+4=2+10=12. (Associative property of			 Peer questioning 	
addition.)		How can we show that all	Classroom	
		possible two-addend	Discussion	
1.OA.B.4		combinations of a number have	Problem Solving	
Understand subtraction as an unknown-addend		been found?	Challenges	
problem. For example, subtract 10-8 by finding			Exit Tickets	
the number that makes 10 when added to 8.		How can we use numbers,	Vocabulary checks	
		pictures, words, and/or		
1.OA.C.5		notation to represent a	Summative	
Relate counting to addition and		solution to a problem?	Montessori Three-	

subtraction (e.g., by counting on 2 to add 2).		Period Lesson
	Learning Targets	including
1.OA.C.6	Students will:	introduction,
Add and subtract within 20, demonstrating	 Fluency with addition 	practice,
fluency for addition and subtraction within 10.	and subtraction within	and assessment of
Use strategies such as counting on; making ten	10.	the %
(e.g., 8+6=8+2+4=10+4=14); decomposing a		of concept mastery.
number leading to a ten (e.g., 13-4=13-3-1=10-	Solve a put	 Problem-based
1=9); using the relationship between addition	together/take	interactive Learning
and subtraction (e.g., knowing that 8+4=12,	apart problem with one	activities
one knows 12-8=4); and creating equivalent	addend unknown.	 Performance
but easier or known sums (e.g., adding 6+7 by		assessment
creating the known equivalent 6+6+1=12+1=	 Solve add to and take 	
13).	from	
	problems with	
1.0A.D.7	unknown change.	
Understand the meaning of the equal sign, and		
determine if equations involving addition and	Understand the	
subtraction are true or false. For example,	meaning of	
which of the following equations are true and	the equal sign.	
which are false? 6=6, 7=8-1,5+2=2+5, 4+1=5+2.		
	Determine the	
1.OA.D.8	unknown	
Determine the unknown whole number in an	in an addition or	
addition or subtraction equation relating three	subtraction equation	
whole numbers. For example, determine the	relating 3 numbers	
unknown number that makes the equation true	(e.g., 5+? =8).	
in each of the equations $8+?=11, 5=\Box-3,$		
6+6=□.		
1.NBT. B.2b		

The numbers from 11 to 19 are composed of a		
ten and one, two, three, four, five, six, seven,		
eight, or nine ones.		

Unit Six: Modeling with Data

Timeline: 12 Sessions

Montessori Materials:

Investigations Unit 6 – Would You Rather Be an Eagle or a Whale?

Unit Description: IN this unit, student focus on collecting, recording, representing, describing, and comparing date in two and three categories, and on conducting data investigations.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
		Learning Targets	Assessments
1.0A.A.1	Numbers, pictures, words,	Essential Questions	Montessori Materials
Use addition and subtraction within 20 to solve	and/or notation can be	How can counting by 10s help	Teacher-made materials
word problems involving situations of adding	used to represent a	me?	Attribute blocks
to, taking from, putting together, taking apart,	solution to a problem.		
and comparing, with unknowns in all positions,		How can we make sense of and	Investigations Unit 6 –
e.g., by using objects, drawings, and equations	The sum of the responses	compare different data	Would You Rather Be an
with a symbol for the unknown number to	in each data category	representations?	Eagle or a Whale?
represent the problem.	must equal the total		
	responses collected.	How can we keep track of data	Assessments
1.OA.A.2		collected?	<u>Formative</u>
Solve word problems that call for addition of			Student Exercises
three whole numbers whose sum is less than or		How can we represent and	 Peer questioning
equal to 20, e.g., by using objects, drawings,		compare data?	Classroom
and equations with a symbol for the unknown			Discussion
number to represent the problem.		How can we make a	 Problem Solving
		comparative statement (more	Challenges
1.OA.C.6		than/fewer than/same as)	Exit Tickets
Add and subtract within 20, demonstrating		about a data representation?	Vocabulary checks
fluency for addition and subtraction within 10.			
Use strategies such as counting on; making ten		Learning Targets	<u>Summative</u>
(e.g., 8+6=8+2+4=10+4=14); decomposing a		Students will:	Montessori Three-
number leading to a ten (e.g., 13-4=13-3-1=10-		Represent and describe	Period Lesson
		a set	including

1=9); using the relationship between addition and subtraction (e.g., knowing that 8+4=12, one knows 12-8=4); and creating equivalent but easier or known sums (e.g., adding 6+7 by creating the known equivalent 6+6+1=12+1= 13).	three categories (e.g., how many are in each group, which groupprhas more/how many more, and how manyof	troduction, ractice, nd assessment of le % concept mastery. roblem-based
1.NBT. B.2a 10 can be thought of as a bundle of ten ones—called a "ten."	the survey). ac	teractive Learning tivities erformance
1.NBT. B.2c The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones).	Solve comparison story as problems with bigger or smaller unknown.	sessment

Unit Seven: Addition, Subtraction, and the Number System 4Timeline: 24 SessionsUnit Description: In this unit, students will focus on counting by numbers other than 1 with an emphasis on groups of 10, on adding and
subtracting 10 from a 2-digit number, on subtracting a multiple of 10 from a multiple of 10, and on representing 2-digt number with tens and
ones.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
		Learning Targets	Assessments
1.OA.A.2	A quantity can be	Essential Questions	Montessori Materials
Solve word problems that call for addition of	described by its number	How can we tell the number on	Tens board
three whole numbers whose sum is less than or	on ones, tens, etc.	tens in a 2-digit number?	Tens board
equal to 20, e.g., by using objects, drawings,			100 Board
and equations with a symbol for the	The first digit of a 2-digit	How can I record what I have	Gold bead material
unknown number to represent the problem.	number changes when 10	counted?	
	is added or subtracted and		Investigations Unit 7 – How
1.OA.C.5	the second digit remains	How can groups of 2, 5, and/or	Many Tens? How Many
Relate counting to addition and	the same.	10 be easily counted?	Ones?
subtraction (e.g., by counting on 2 to add 2).			
	The first digit in a 2-digit	Learning Targets	<u>Assessments</u>
1.OA.C.6	number determines the	Students will:	<u>Formative</u>
Add and subtract within 20, demonstrating	number of groups of 10	 Understand that the 	 Student Exercises
fluency for addition and subtraction within 10.	and the second number	multiples of 10 through	 Peer questioning
Use strategies such as counting on; making ten	determines the number	90 refer to 1–9	Classroom
(e.g., 8+6=8+2+4=10+4=14); decomposing a	on ones.	tens and 0 ones.	Discussion
number leading to a ten (e.g., 13-4=13-3-1=10-			 Problem Solving
1=9); using the relationship between addition	Multiples of 10 (up to 90)	 Use a numeral to 	 Challenges
and subtraction (e.g., knowing that 8+4=12,	can be represented as	represent	 Exit Tickets
one knows 12-8=4); and creating equivalent	groups of ten and no	a number of objects	 Vocabulary checks
but easier or known sums (e.g., adding 6+7 by	ones.	organized into tens and	
creating the known equivalent 6+6+1=12+1=		ones and, given a	<u>Summative</u>
13).		numeral, represent it	Montessori Three-
		with tens and ones.	Period Lesson
1.OA.D.8			including

 Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations 8+? =11, 5=□-3, 6+6=□. 1.NBT.A.1 Count to 120, starting at any number less than 120. In this range, read and write numerals and represent a number of objects with a written numeral. 1.NBT.B.2a 10 can be thought of as a bundle of ten ones—called a "ten." 1.NBT.B.2c The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones). 	 Subtract multiples of 10 from multiples of 10 using concrete models that represent tens and ones. Use standard notation (<, >) to represent the comparison of two 2- digit numbers. Add or subtract 10 to/from any 2-digit number. Add within 100 using concrete models that represent tens and ones.
 1.NBT.B.3 Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols 7, =, and 6. 1.NBT.C.4 Add within 100, including adding a two-digit number and a one-digit number, and adding a 	

two-digit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten.		
1.NBT.C.5 Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used.		
1.NBT.C.6 Subtract multiples of 10 in the range 10–90 from multiples of 10 in the range 10–90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.		

Unit Description: In this unit, students will focus for naming and describing defining attributes of 2		nparing, and building 3-D shapes a	nd on developing vocabulary
Standards Alignment	Unit Concept/Big Ideas	Essential Questions/ Learning Targets	Instructional Materials/ Assessments
1.MD.B.3	Clocks allow us to tell	Essential Questions	Montessori Materials
Tell and write time in hours and half-hours using analog and digital clocks.	time. 3-D shapes can be	How can we combine smaller 3-D shapes to compose a larger 3-D structure?	Teacher-made clock materials Geometric cabinet
1.G.A.1 Distinguish between defining attributes (e.g., triangles are closed and three-sided) versus non-defining attributes (e.g., color,	identified by their attributes.	How can we describe 3-D shapes?	Geometric solids 3-part geometry cards
orientation, overall size); build and draw shapes to possess defining attributes.	3-D shapes can be combined to create other 3-D shapes.	How can a shapes attributes help us identify 3-D shapes?	Investigations Unit 8 – Blocks and Buildings
1.G.A.2 Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half- circles, and quarter-circles) or three- dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape.		How can we tell time? How can clocks help us tell time? How can we determine the length of something? How can attributes help us identify a 3-D shape?	Assessments Formative Student Exercises Peer questioning Classroom Discussion Problem Solving Challenges Exit Tickets Vocabulary checks
		<u>Learning Targets</u> Students will:	 Summative Montessori Three- Period Lesson including

Tell time to the hour.
 Demonstrate accurate measuring techniques when measuring an object or distance with multiple units.
 Compose 3-D shapes. Compare the lengths of two objects indirectly by using a third length.
 Use geometric language to describe and identify defining attributes of familiar 3-D shapes. Match a 2-D representation of a 3-D shape to the outline of one of its faces. introduction, practice, and assessment of the % of concept mastery. Problem-based interactive Learning activities Performance assessment

Attachment 4D - Math Maps

Sussex Montessori School Mathematics Curriculum 2nd Grade

Curriculum Framework for Mathematics

School: Sussex Montessori SchoolCurricular Resources: Montessori Materials and Lessons / Investigations3Grade: 2Unit One: Addition, Subtraction, and the Number System 1Timeline: 20 SessionsUnit Description: In this unit students focus on adding and subtracting single-digit numbers, especially on adding numbers in any order;
shifting from counting by 1s to counting by groups, particularly groups of tens and ones, which lays the foundation for students' work with
place value and the base-10 number system; and developing and refining strategies for solving a variety of addition and subtraction problems.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
		Learning Targets	Assessments
2.0A.A.1	There is more than one	Essential Questions	Montessori Materials
Use addition and subtraction within	way to count a quantity.	How can we count coins?	100 board
100 to solve one- and two-step word problems			3-part coin quantity cards
involving situations of adding to, taking from,	Numbers, symbols,	How can we equivalent	3-part time cards
putting together, taking apart, and comparing,	pictures, and/or words	expressions for a number?	Stamp game
with unknowns in all positions, e.g., by using	can be used to represent a		Place value cards
drawings and equations with a symbol for the	solution to a problem.	How can we solve problems	Bead frame
unknown number to represent the problem.		about 10s and 1s?	Bead Cabinet
	Identifying and using		
2.OA.B.2	patterns can help us	How can we count groups of 2,	Investigations Unit 1 –
Fluently add and subtract within 20 using	count, read, and write	5, or 10?	Building Numbers and
mental strategies. By end of Grade 2, know	numbers to 100 and		Solving Story Problems
from memory all sums of two one-digit	beyond.	Does order matter in addition?	
numbers.			Assessments
	The first digit of a 2-digit	Does order matter in	Formative
2.NBT.A.2	number designates the	subtraction?	Student Exercises
Count within 1000; skip-count by 5s, 10s, and	number of groups of 10		Peer Questioning
100s.	and the second digit	How can using known facts to	Classroom
	designates the number of	add two or more numbers.	Discussions
2.NBT.A.3	ones.		Quick Check sheets
Read and write numbers to 1000 using		How do clocks tell us time?	Vocabulary checks
base-ten numerals, number names, and			Problem Solving
expanded form.		Learning Targets	Challenges

.NBT.A.3	Students will:	 Exit Tickets
Read and write numbers to 1000 using	Solve a comparison	3-Period Lesson
base-ten numerals, number names, and	story problem with the	
expanded form.	difference unknown.	<u>Summative</u>
Expanded form. 2.NBT.B.6 Add up to four two-digit numbers using trategies based on place value and properties of operations. 2.NBT.B.9 Explain why addition and subtraction trategies work, using place value and the properties of operations. 2.MD.B.6 Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers 0, 1, 2,, and represent whole- number sums and differences within 100 on a number line diagram. 2.MD.C.8 Solve word problems involving dollar bills, juarters, dimes, nickels, and pennies, using a and ¢ symbols appropriately. Example: If you	 Solve put together/take apart story problems with the total unknown, and add to and take from story problems with the result unknown. Use known combinations to add several numbers in any order. Recognize and identify coins and their values. 	 Montessori Three- Period Lesson including introduction, practice, and assessment of the % of concept mastery. Problem-based interactive Learning activities Performance assessment

Recognize and draw shapes having specified		
attributes, such as a given number of		
angles or a given number of equal faces.		
Identify triangles, quadrilaterals, pentagons,		
hexagons, and cubes.		

Unit Two: 2-D Geometry Timeline: 12 Sessions

Unit Description: In this unit students focus on observing and describing defining attributes of 2-D and 3-D shapes (e.g., number and shape of faces, number and length of sides, and number of angles and vertices), and using those attributes as they sort, construct, draw, and compare shapes.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/ Learning Targets	Instructional Materials/ Assessments
2.OA.B.2	Geometry has its own	Essential Questions	Montessori Materials
Fluently add and subtract within 20 using	vocabulary.	How can we categorize shapes	Geometric cabinet
mental strategies. By end of Grade 2, know	vocabalary.	based on their attributes?	Geometric solids
from memory all sums of two one-digit	A 3-D shapes attributes	based on their attributes:	Constructive triangle boxes
numbers.	help us identify it.	How can we determine a half,	Fraction skittles
numbers.	help us identify it.	third, or fourth of a region?	Fraction insets
2.G.A.1	Quadrilaterals have four		Fraction box
Recognize and draw shapes having specified	sides and four angles.	Can halves or fourths of the	
	sides and rour angles.	same shape look different?	Investigations Unit 2
attributes, such as a given number of	Regular polygons can be	same shape look unrerent?	Investigations Unit 2 – Comparing and Combining
angles or a given number of equal faces.	Regular polygons can be named and sorted by their	How can we develop fluency	
Identify triangles, quadrilaterals, pentagons,	number of sides.	How can we develop fluency with doubles facts within 20?	Shapes
hexagons, and cubes.	number of sides.	with doubles facts within 20?	A
2 C A 2) A (hat is the valationship	Assessments
2.G.A.2	Different rectangular	What is the relationship	Formative
Partition a rectangle into rows and columns of	arrays can be made with	between doubles and near	Student Exercises
same-size squares and count to find the total	the same number of tiles.	doubles?	Peer Questioning
number of them.			Classroom
	Fractions are equal parts	What is the relationship	Discussions
2.G.A.3	of a whole.	between quadrilaterals,	Quick Check sheets
Partition circles and rectangles into two,		rectangles, and squares?	 Vocabulary checks
three, or four equal shares, describe the shares			Problem Solving
using the words halves, thirds, half of, a third		Learning Targets	Challenges
of, etc., and describe the whole as two halves,		Students will:	Exit Tickets
three thirds, four fourths. Recognize that equal		 Identify defining 	3-Period Lesson
		attributes	

shares of identical wholes need not have the	of 2-D and 3-D shapes Summative
same shape.	 (number and shape of faces, number and length of sides, number of angles and vertices) and draw shapes with those attributes. Make a rectangle out of same size squares and specify the number of squares in Make a rectangle out of rows and the number of squares in
	 each row. Recognize that [halves, thirds, fourths] of the same whole can look different. Partition 2-D shapes into halves, thirds and fourths and name the regions.

Unit Three: Addition, Subtraction, and the Number System 2 Timeline: 26 Sessions				
Unit Description: In this unit students focus on the place value of 2-digit numbers, and operating on those numbers within 100. Students				
come to see 100 as ten 10s and multiples of 100 as being made up of some number of hundreds.				
Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/	
		Learning Targets	Assessments	
2.0A.A.1	Different combinations of	Essential Questions	Montessori Materials	
Use addition and subtraction within	a 2-digit number, using	How can 100 charts help us	100 Board	
100 to solve one- and two-step word problems	only tens and ones, can	reason about the magnitude	Teens Board	
involving situations of adding to, taking from,	represent the same	and relationship of numbers?	Tens Board	
putting together, taking apart, and comparing,	number, (e.g. 4 tens and			
with unknowns in all positions, e.g., by using	6 ones, 3 tens and 16	What is the relationship	Investigations Unit 3 – How	
drawings and equations with a symbol for the	ones, etc.).	between 1, 10, and 100?	Many of Each? How Many	
unknown number to represent the problem.			in All?	
	An equation can	How can we use standard		
2.OA.B.2	represent a 2-digit	notation (<, >) to express the	<u>Assessments</u>	
Fluently add and subtract within 20 using	number as the sum of	relationship between two	<u>Formative</u>	
mental strategies. By end of Grade 2, know	multiples of ten and	quantities?	Student Exercises	
from memory all sums of two one-digit	some number of ones		Peer Questioning	
numbers.	(e.g., 22-20+2,	How can we identify a quantity	Classroom	
	22=10+10+2).	given a number of tens and	Discussions	
2.NBT.A.3		ones?	Quick Check sheets	
Read and write numbers to 1000 using	Adding two-digit		 Vocabulary checks 	
base-ten numerals, number names, and	numbers	What happens to the tens place	Problem Solving	
expanded form.		when a multiple of 10 is added	Challenges	
	Sums can be represented	or subtracted?	Exit Tickets	
2.NBT.A.3	as lengths on a number		3-Period Lesson	
Read and write numbers to 1000 using	line	Learning Targets		
base-ten numerals, number names, and	Numbers can be grouped	Students will:	<u>Summative</u>	
expanded form.	Numbers can be grouped and added in any order	 Solve a put 	Montessori Three-	
2.NBT.B.5	and added in any order	together/take	Period Lesson	
2.1101.0.3			including	

 Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. 2.NBT.B.6 Add up to four two-digit numbers using strategies based on place value and properties of operations. 2.NBT.B.8 Mentally add 10 or 100 to a given number 100–900, and mentally subtract 10 or 100 from a given number 100–900. 2.NBT.B.9 Explain why addition and subtraction strategies work, using place value and the properties of operations. 2.MD.B.6 Represent whole numbers as lengths from 0 on a number line diagram with equally Spaced points corresponding to the numbers 0, 1, 2,, and represent whole-number sums and differences within 100 on a number line diagram. 2.MD.C.8 Solve word problems involving dollar bills, quarters, dimes, nickels, and pennies, using 	Regrouping Subtracting two-digit numbers Differences can be calculated using a number line Using addition to check subtraction	 apart story problem with both addends unknown, and find all the possible combinations. Solve a put together/take apart story problem with one addend unknown. Solve two-step story problems about money. Solve story problems with an unknown change. Solve story problems with an unknown start. Solve a put together/take apart story problem with both addends unknown, and find all the possible combinations. 	introduction, practice, and assessment of the % of concept mastery. Problem-based interactive Learning activities Performance assessment
--	---	---	---

\$ and ¢ symbols appropriately. Example: If you		
have 2 dimes and 3 pennies, how many cents		
do you have?		

 Unit Four: Measurement and Fractions
 Timeline: 14 Sessions

 Unit Description: In this unit students focus on sorting and classifying categorical data; ordering numerical data; and collecting and representing categorical and numerical data using a variety of representations: student-generated representations, picture graphs, bar graphs, Venn diagrams, cube towers, and line plots.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
		Learning Targets	Assessments
2.OA.A.1	Data can be represented	Essential Questions	<u>Montessori Materials</u>
Use addition and subtraction within	on a picture graph, bar	How can we represent data on	Stamp game
100 to solve one- and two-step word problems	graph, or line plot.	a picture graph, bar graph, or	
involving situations of adding to, taking from,		line plot?	Investigations Unit 4 – Fish
putting together, taking apart, and comparing,	An equation can show		Lengths and Fraction Rugs
with unknowns in all positions, e.g., by using	that the sum of the	How can we gather data?	
drawings and equations with a symbol for the	responses in each data		<u>Assessments</u>
unknown number to represent the problem.	category equals the total	How can we record data?	<u>Formative</u>
	responses collected.		Student Exercises
2.OA.B.2		How can we interpret data	Peer Questioning
Fluently add and subtract within 20 using		from graphs?	Classroom
mental strategies. By end of Grade 2, know			Discussions
from memory all sums of two one-digit		Learning Targets	Quick Check sheets
numbers.		Students will:	Vocabulary checks
		 Organize a set of data 	Problem Solving
2.NBT.A.2		into up to four	Challenges
Count within 1000; skip-count by 5s, 10s, and		categories.	Exit Tickets
100s.			3-Period Lesson
		• Create, describe, and	
2.MD.D.9		interpret a variety of	Summative
Generate measurement data by measuring		data representations,	Montessori Three-
lengths of several objects to the nearest		including picture	Period Lesson
whole unit, or by making repeated		graphs and bar graphs.	including
measurements of the same object. Show the			introduction,
measurements by making a line plot, where the		• Order, represent, and	practice,
			practice,

horizontal scale is marked off in whole-number units.	describe a set of numerical data.	and assessment of the % of concept mastery.
2.MD.D.10 Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put- together, take apart, and compare problems using information presented in a bar graph.		 Problem-based interactive Learning activities Performance assessment

Unit Five: Addition, Subtraction and the Number System 3Timeline: 10 SessionsUnit Description: In this unit students focus on the place value of 3-digit numbers and operating on numbers within 100. Students come to
see 100 as 10 tens and multiples of 100 as being made up of some number of hundreds.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/ Learning Targets	Instructional Materials/ Assessments
2.0A.A.1	Three-digit numbers:	Essential Questions	Montessori Materials
Use addition and subtraction within	place value	How can using cubes or a	Teacher-made materials
100 to solve one- and two-step word problems		number line show the	Golden Beads
involving situations of adding to, taking from,	Finding missing parts	relationship between adding	Place value cards
putting together, taking apart, and comparing,		(or subtracting) 9 and addition	Stamp Game
with unknowns in all positions, e.g., by using	Using models to solve	(or subtracting) 10 to/from a	
drawings and equations with a symbol for the	problems	number?	Investigations Unit 5 –
unknown number to represent the problem.			Number Games and Crayon
2.OA.B.2		How can we solve 2-step problems?	Problems
Fluently add and subtract within 20 using		problems	Assessments
mental strategies. By end of Grade 2, know		How can we solve story	Formative
from memory all sums of two one-digit		problems that involve	Student Exercises
numbers.		comparison and finding the	Peer Questioning
		difference?	Classroom
2.NBT.A.2			Discussions
Count within 1000; skip-count by 5s, 10s, and		What combinations of coins	Quick Check sheets
100s.		equal \$1.00?	
1005.			Vocabulary checks
2.NBT.A.3		What strategies can we use to	Problem Solving Challenges
Read and write numbers to 1000 using		add three-digit numbers?	Challenges
base-ten numerals, number names, and			Exit Tickets
expanded form.		What strategies can we use to	3-Period Lesson
		subtract three-digit numbers?	
2.NBT.A.3			Summative
2.1101.71.5			 Montessori Three-

Read and write numbers to 1000 using	What strategies and techniques	Period Lesson
base-ten numerals, number names, and	are used to add mentally?	including
expanded form.		introduction,
	What strategies are used to	practice,
2.NBT.B.5	subtract mentally?	and assessment of
Fluently add and subtract within 100 using		the %
strategies based on place value, properties	What techniques are used to	of concept mastery.
of operations, and/or the relationship between	subtract three-digit numbers?	Problem-based
addition and subtraction.		interactive Learning
	When is counting on a helpful	activities
2.NBT.B.6	Strategy?	Performance
Add up to four two-digit numbers using		assessment
strategies based on place value and	When is counting back a	
properties of operations.	helpful strategy?	
2.NBT.B.8	Learning Targets	
Mentally add 10 or 100 to a given number 100–	Students will:	
900, and mentally subtract 10 or 100	 Solve a 2-step story 	
from a given number 100–900.	problem	
	that involves finding	
2.NBT.B.9	the difference between	
Explain why addition and subtraction	a 2-digit number and	
strategies work, using place value and the	100.	
properties of operations.		
	 Solve comparison story 	
2.MD.B.6	problems with a bigger	
Represent whole numbers as lengths from 0 on	unknown.	
a number line diagram with equally		
Spaced points corresponding to the	Read, write, count and	
	compare numbers to	
	1,000.	

numbers 0, 1, 2,, and represent whole- number sums and differences within 100 on a number line diagram.	 Count by 5s, 10s, and 100s within 1,000.
 2.MD.C.8 Solve word problems involving dollar bills, quarters, dimes, nickels, and pennies, using \$ and ¢ symbols appropriately. Example: If you have 2 dimes and 3 pennies, how many cents do you have? 	 Read, write, count and compare numbers to 1,000. Add fluently within 100.
	 Add/subtract 10 or 100 to/from numbers within 1,000.

Unit Six: Modeling with DataTimeline: 12 SessionsUnit Description: In this unit students focus on developing strategies for accurately measuring length with nonstandard and standard units
(e.g., craft sticks, cubes, inches, feet, yards, centimeters, and meters) and tools (e.g., inch-brick measuring tools, rulers, yardsticks, and meter
sticks) and for considering the relationship between different units and tools (e.g., the larger the unit, the smaller the count will be).

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
		Learning Targets	Assessments
2.0A.A.1	Identifying contexts for	Essential Questions	Montessori Materials
Use addition and subtraction within	measurement	How can we measure and	No specific Montessori
100 to solve one- and two-step word problems		compare lengths?	materials necessary
involving situations of adding to, taking from,	Comparing lengths		
putting together, taking apart, and comparing,		Can we use nonstandard units	Investigations Unit 6 –
with unknowns in all positions, e.g., by using	Accurately using	to measure length?	Would You Rather Be an
drawings and equations with a symbol for the	measuring tools		Eagle or a Whale?
unknown number to represent the problem.		How can we use subtraction to	
	Inches, feet, yards	compare lengths?	<u>Assessments</u>
2.NBT.B.5			Formative
Fluently add and subtract within 100 using	Centimeters, meters	Why do we have standard	Student Exercises
strategies based on place value, properties		measurement units for length?	Peer Questioning
of operations, and/or the relationship between	Length and width		Classroom
addition and subtraction.		How can the length of one	Discussions
	Representing and	object be used to measure	Quick Check sheets
2.MD.A.2	describing a set of	another?	Vocabulary checks
Measure the length of an object twice, using	measurement data in a		Problem Solving
length units of different lengths for the two	table and on a line plot	What strategies can we use to	Challenges
measurements; describe how the two		add or subtract measurements	Exit Tickets
measurements relate to the size of the unit		in the same unit?	3-Period Lesson
chosen.			
		How can we represent	Summative
2.MD.A.3		measurement data in a table or	Montessori Three-
Estimate lengths using units of inches, feet,		on a line plot?	Period Lesson
centimeters, and meters.			including

2.MD.A.4 Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard length unit.	Learning Targetsintroduction,Students will:practice,• Recognize that, when measuring the same length, larger units yield smaller countsand assessment o• Problem-based	ry.
2.MD.B.5	(and vice versa). interactive Learnin activities	ng
Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown	Estimate and measure lengths in inches, feet, centimeters, and meters.	
number to represent the problem.	 Solve comparison and other story problems 	
2.MD.D.9	about lengths.	
Generate measurement data by measuring lengths of several objects to the nearest whole unit, or by making repeated measurements of the same object. Show the measurements by making a line plot, where the horizontal scale is marked off in whole-number	 Represent measurement data on a line plot. 	
units.		

Unit Seven: Addition, Subtraction, and the Number System 4Timeline: 24 SessionsUnit Description: The focus of this unit is on working with equal groups as the foundation of multiplication by investigating even and oddnumbers and by representing equal groups with arrays and tables.			
Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
		Learning Targets	Assessments
2.OA.B.2	Adding two-digit numbers	Essential Questions	Montessori Materials
Fluently add and subtract within 20 using		What is an array?	Bead cabinet
mental strategies. By end of Grade 2, know	Sums can be represented		Multiplication board
from memory all sums of two one-digit	as lengths on a number	What is the relationship	Multiplication ticket box
numbers.	line	between a number of equal	Multiplication finger charts
		groups and their total?	Pythagorean board
2.NBT.A.2	Numbers can be grouped		Division board
Count within 1000; skip-count by 5s, 10s, and	and added in any order	Can all numbers be made into	Division ticket box
100s.		two equal parts?	Division finger charts
	Regrouping		Cards and counters
2.NBT.B.5		How are multiplication and	
Fluently add and subtract within 100 using	Subtracting two-digit	division related?	Investigations Unit 7 – How
strategies based on place value, properties	numbers		Many Tens? How Many
of operations, and/or the relationship between		How can skip counting help us	Ones?
addition and subtraction.	Differences can be	solve math problems?	
	calculated using a number		<u>Assessments</u>
	line	Learning Targets	<u>Formative</u>
		Students will:	Student Exercises
	Using addition to check	Numbers can and	Peer Questioning
	Subtraction	cannot be made into	Classroom
		groups of two or two	Discussions
	Any number that can be	equal groups.	Quick Check sheets
	divided into groups of two		Vocabulary checks
	can also be divided into	 Understand that any 	Problem Solving
	two equal groups.	number that can be	Challenges
		divided into groups of	Exit Tickets

two can also be divided • 3-Period Lesson
into two equal groups
(and vice versa). <u>Summative</u>
Characterize even and Montessori Three-
odd numbers as those Period Lesson
that do or do not make including
groups of two introduction,
(partners) and two practice,
equal groups (teams). and assessment of
the %
Represent an even of concept mastery.
number as the sum of Problem-based
two equal addends and interactive Learning
an odd number as the activities
sum of two equal Performance
addends plus 1. assessment
Consider whether
observations about
even or odd numbers
apply to all even
numbers or all odd
numbers.
Add equal groups.
Use an equation to
model adding equal
groups.
Describe the
relationship between a

number of equal
groups and their total.
- Poprosont
Represent
multiplicative
relationships with
tables.
Compare situations
that look different but
have the same
equal group structure.
Solve problems
involving equal groups
and the total number
of objects.

Unit Eight: Addition, Subtraction, and the Number System 5Timeline: 20 SessionsUnit Description: This unit focuses on developing and achieving fluency with subtraction within 100, and on achieving fluency with addition
and subtraction facts within 20

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
		Learning Targets	Assessments
2.0A.A.1	Fluency with addition and	Essential Questions:	Montessori Materials
Use addition and subtraction within	subtraction within 20	How can we demonstrate	Money Roll-out
100 to solve one- and two-step word problems		fluency with addition and	Three-part money cards
involving situations of adding to, taking from,	Using standard notation	subtraction within 20.	Coin amount matching cards
putting together, taking apart, and comparing,	to represent addition and		Making change matching
with unknowns in all positions, e.g., by using	subtraction situations	How can knowing doubles help	cards
drawings and equations with a symbol for the		us solve addition or subtraction	Stamp game
unknown number to represent the problem.	Coin equivalences for	problems?	Teacher-made materials
	\$1.00		Golden beads
2.OA.B.2		How can we solve make-	Place value cards
Fluently add and subtract within 20 using	Strategies for subtracting	change story problems?	Stamp game
mental strategies. By end of Grade 2, know	2-digit numbers		
from memory all sums of two one-digit		Where do we start when we	
numbers.	Place value	add three-digit numbers?	Investigations Unit 8 –
			Enough for the class?
2.NBT.A.3	Expanded notation	Learning Targets:	Enough for the grade?
Read and write numbers to 1000 using		Students will:	
base-ten numerals, number names, and	Rounding to the nearest	Solve a comparison	
expanded form.	10 and 100	story	<u>Assessments</u>
		problem with a smaller	<u>Formative</u>
2.NBT.A.3	Adding and subtracting	unknown.	Student Exercises
Read and write numbers to 1000 using	three-digit numbers		Peer Questioning
base-ten numerals, number names, and	accurately	Fluently subtract 2-	Classroom
expanded form.		digit	Discussions
		numbers.	Quick Check sheets

2.NBT.B.5		Vocabulary checks
Fluently add and subtract within 100 using	 Fluently add and 	 Problem Solving
strategies based on place value, properties	subtract	Challenges
of operations, and/or the relationship between	within 20.	Exit Tickets
addition and subtraction.		• 3-Period Lesson
	 Represent and solve 	
2.NBT.B.7	addition and S	ummative
Add and subtract within 1000, using concrete	subtraction problems	Montessori Three-
models or drawings and strategies based on	with 3-digit numbers.	Period Lesson
place value, properties of operations, and/or		including
the relationship between addition and	Name, notate, and tell	introduction,
subtraction; relate the strategy to a written	time	practice,
method.	to the nearest 5	and assessment of
Understand that in adding or subtracting three-	minutes using analog	the %
digit numbers, one adds or subtracts hundreds	and digital formats and	of concept mastery.
and hundreds, tens and tens, ones and ones;	associate A.M. and	 Problem-based
and sometimes it is necessary to compose or	P.M. with time of day.	interactive Learning
decompose tens or hundreds.		activities
		Performance
2.NBT.B.9		assessment
Explain why addition and subtraction		
strategies work, using place value and the		
properties of operations.		
2.MD.B.6		
Represent whole numbers as lengths from 0 on		
a number line diagram with equally		
Spaced points corresponding to the		
numbers 0, 1, 2,, and represent whole-		
number sums and differences within 100 on a		
number line diagram.		

2.MD.C.7 Tell and write time from analog and digital clocks to the nearest five minutes, using a.m. and p.m.		
2.MD.C.8 Solve word problems involving dollar bills, quarters, dimes, nickels, and pennies, using \$ and ¢ symbols appropriately. Example: If you have 2 dimes and 3 pennies, how many cents do you have?		

Attachment 4D - Math Maps

Sussex Montessori School Mathematics Curriculum 3rd Grade

Curriculum Framework for Mathematics

 School: Sussex Montessori School
 Curricular Resources: Montessori Materials and Lessons / Investigations
 3
 Grade: 3

 Unit One: Understanding Equal Groups, Multiplication and Division I
 Timeline: 23 Sessions

 Unit Description:
 In this unit students focus on understanding the meaning of multiplication, modeling multiplication using arrays, and understanding the inverse relationship between multiplication and division.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
		Learning Targets	Assessments
3.0A.A.1	Multiplication is	Essential Questions	Montessori Materials
Interpret products of whole numbers, e.g.,	combining equal groups.	What is the relationship among	Multiplication board,
interpret 5×7 as the total number of objects in		skip counting, repeated	tickets, and finger charts
5 groups of 7 objects each. For example,	Represent and solve	addition, and multiplication?	
describe a context in which a total number of	problems using		Division board, tickets, and
objects can be expressed as 5×7.	multiplication and	Does doubling (or halving) on	finger charts
	division.	factor in a multiplication	
3.0A.A.2		expression double (or halve)	Bead cabinet
Interpret whole-number quotients of whole	Multiply and divide within	the product?	
numbers, e.g., interpret 56÷8 as the number of	100.		Teacher-made materials
objects in each share when 56 objects are		How can we model	
partitioned equally into 8 shares, or as a	Solve problems using the	multiplication situations with	Geometry cabinet
number of shares when 56 objects are	four operations, and	arrays?	
partitioned into equal shares of 8 objects each.	identify patterns in		Investigations Unit 1 –
For example, describe a context in which a	arithmetic.	What is the square of a	Understanding Equal
number of shares or a number of groups can		number?	Groups
be expressed as 56÷8.	Geometric measurement:		
	Understand the concept	What is a prime number?	
3.0A.A.3	of area and relate area to		<u>Assessments</u>
Use multiplication and division within 100 to	multiplication and	Learning Targets	<u>Formative</u>
solve word problems in situations involving	addition.	Students will:	 Student Exercises
equal groups, arrays, and measurement		 Demonstrate an 	 Peer Questioning
quantities, e.g., by using drawings and		understanding of	Classroom
		multiplication and	Discussions

acception of with a symplect for the contractor		
equations with a symbol for the unknown	division as involving	Vocabulary checks
number to represent the problem.	equal groups.	Problem Solving
		Challenges
3.OA.A.4	 Solve multiplication 	 Exit Tickets
Determine the unknown whole number in a	and related division	
multiplication or division equation relating	problems by using skip Sum	<u>imative</u>
three whole numbers. For example,	counting or known	 Montessori Three-
determine the unknown number that makes	multiplication facts.	Period Lesson
the equation true in each of the equations		including
8×?=48, 5=?÷3, 6×6=?.	 Interpret and use 	introduction,
	multiplication and	practice,
3.OA.B.5	division notation.	and assessment of
Apply properties of operations as strategies to		the %
multiply and divide. Examples: If 6×4=24 is	Demonstrate fluency	of concept mastery.
known, then 4×6=24 is also known.	with	 Problem-based
(Commutative property of multiplication.)	multiplication facts ×1,	interactive Learning
$3\times5\times2$ can be found by $3\times5=15$, then $15\times2=30$,	×2, ×5, and ×10.	activities
or by 5×2=10, then 3×10=30. (Associative	~2, ~5, and ~10.	
property of multiplication.) Knowing that	• Colve multiplication	Performance
8×5=40 and 8×2=16, one can find 8×7as	 Solve multiplication and division word 	assessment
8×(5+2)=(8×5)+(8×2)=40+16=56.		
(Distributive property.)	problems and write	
(Distributive property.)	equations to represent	
3.OA.B.6	the problems.	
Understand division as an unknown-	Solve multi-step	
factor problem. For example, find 32÷8	problems involving	
by finding the number that makes 32 when	multiplication and	
multiplied by 8.	addition.	
3.0A.C.7		

Fluently multiply and divide within 100, using strategies such as the relationship between	
multiplication and division (e.g., knowing that	
8×5=40, one knows 40÷5=8) or properties of	
operations. By the end of Grade 3, know from	
memory all products of two one-digit numbers.	
3.OA.D.8	
Solve two-step word problems using the four	
operations. Represent these problems using	
equations with a letter standing for the	
unknown quantity. Assess the reasonableness	
of answers using mental computation and	
estimation strategies including rounding.	
3.0A.D.9	
Identify arithmetic patterns (including patterns	
in the addition table or multiplication table),	
and explain them using properties of	
operations. For example, observe that 4 times	
a number is always even, and explain why 4	
times a number can be decomposed into two	
equal addends.	
3.MD.C.7	
Relate area to the operations of multiplication	
and addition.	
3.MD.C.7.b	
Multiply side lengths to find areas of rectangles	
with whole number side lengths in the context	

of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.		
3.MD.C.7.c Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and b+c is the sum of a×b and a×c. Use area models to represent the distributive property in mathematical reasoning.		

Timeline: 15 Sessions Unit Two: Graphs and Line Plots, Modeling with Data **Unit Description:** In this unit students focus on using bar graphs, pictographs, and line plots to represent, describe, and compare categorical and numerical data. They solve one- and two-step "how many more" and "how many less" problems using information presented in the graphs. Students also generate measurement data in inches, half-inches, feet, and yards. **Essential Questions/** Instructional Materials/ **Standards Alignment** Unit Concept/Big Ideas Learning Targets Assessments 3.MD.B.3 Represent and interpret **Essential Questions Montessori Materials** Draw a scaled picture graph and a scaled bar What is the relationship Teacher-made materials for data graph to represent a data set with several between feet and inches? measurement and graphing, but no specific Montessori categories. Solve one- and two-step "how many Reading and interpreting more" and "how many less" problems using bar graphs and Can we combine feet and materials information presented in scaled bar pictographs inches to get a total Graphs. For example, draw a bar graph in which measurement? Investigations Unit 2 each square in the bar graph might represent 5 Using data to compare **Graphs and Line Plots** How can we organize and pets. groups summarize collected data? Assessments 3.MD.B.4 Feet and inches Formative Generate measurement data by measuring What is categorical data? Student Exercises lengths using rulers marked with halves and Measure to the nearest Peer Questioning • fourths of an inch. Show the data by making a half inch When should we use a Classroom • line plot, where the horizontal scale is marked pictograph, line plot, or bar Discussions Using and interpreting a off in appropriate units-whole numbers, graph to organize data? Vocabulary checks scale on a bar graph or halves, or quarters. Problem Solving • pictograph with intervals Learning Targets Challenges Students will: larger than 1 Exit Tickets • Organize, represent, • and describe Summative categorical data, Montessori Three-• choosing categories Period Lesson that help including

	 make sense of the data. Make a line plot for a set of measurement data, with a scale that includes inches and half inches. Generate measurement data by measuring lengths to the half inch. Make and interpret bar graph and a pictograph, including use of scales greater than 1. Describe and summarize a set of data, describing concentrations of data and what those concentrations mean in terms of the situation the data represent.
--	---

Unit Three: Addition, Subtraction, and the Number System 1Timeline: 25 SessionsUnit Description: In this unit focuses on understanding and extending knowledge of place value and the number system to 1,000, and adding
and subtracting accurately and efficiently. Students use a place value context to represent numbers as hundreds, tens, and ones, and find
equivalent ways to use 100s, 10s, and 1s to represent a given number.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
		Learning Targets	Assessments
3.OA.D.9	Use place-value	Essential Questions	Montessori Materials
Identify arithmetic patterns (including patterns	understanding and	What is the relationship	Golden bead materials
in the addition table or multiplication table),	properties of operations	between 1, 10, 100, and 100?	
and explain them using properties of	to perform multi-digit		Stamp games
operations. For example, observe that 4 times	arithmetic.	How many groups of 10s are in	
a number is always even, and explain why 4		a 3-digit number (e.g., there	Bead frames
times a number can be decomposed into two	Solve problems using the	are 27 tens in 276)?	
equal addends.	four operations, and		Place value/expanded
	identify patterns in	How can place-value	notation cards
3.NBT.A.1	arithmetic.	understanding help us to round	
Use knowledge of place value to read, write,		whole numbers to the nearest	Bead cabinet
sequence, and round numbers up to 1,000.	Use place value	ten or hundred?	
	understanding and		Number lines
3.NBT.A.2	properties of operations	How can number lines be used	
Fluently add and subtract within 1000 using	to perform multi-digit	to represent solutions to	Problem tickets
strategies and algorithms based on place value,	arithmetic.	comparison problems?	
properties of operations, and/or the			Clock materials
relationship between addition and subtraction.	Solve problems involving	Learning Targets	
	measurement and	Students will:	Investigations Unit 3 –
3.MD.A.1	estimation of intervals of	Use knowledge of place	Travel Stories and
Tell and write time to the nearest minute and	times, liquid volumes, and	value to read, write,	Collections
measure time intervals in minutes. Solve word	masses of objects.	sequence, and round	
problems involving addition and subtraction of		numbers up to 1,000.	<u>Assessments</u>
time intervals in minutes, e.g., by representing	Using expanded notation.		Formative
the problem on a number line diagram.			Student Exercises

Using place value to determine the size of any number to 1,000.	 Solve addition problems with 3-digit numbers (up to 400) by using strategies that 	 Peer Questioning Classroom Discussions Vocabulary checks
	involve breaking each number apart by place, or by adding one number in parts.	 Problem Solving Challenges Exit Tickets
	 Solve subtraction problems with 2- and 3-digit numbers (up to 300) by using strategies that involve either subtracting one number in parts, adding up, or subtracting back. Tell time to the nearest 	 Montessori Three- Period Lesson including introduction, practice, and assessment of the % of concept mastery. Problem-based interactive Learning
	minute.	activitiesPerformance assessment

Unit Four: Perimeter, Area, and Polygons, 2-D Geometry and Measurement Timeline: 17 Sessions Unit Description: In this unit students focus on understanding and finding perimeter and area using standard units of measurement, and on classifying 2-D figures. Students use standard measurement tools to measure the length of objects and the distance around 2-dimensional figures (perimeter). They use square units to measure the amount of space a given object covers (area). Students build on work connecting arrays and multiplication, and find area by multiplying length and width.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/ Learning Targets	Instructional Materials/ Assessments
3.MD.C.5	Geometric measurement:	Essential Questions	Montessori Materials
Recognize area as an attribute of plane figures and understand concepts of area	Understand the concept of area and relate area to	How can we find perimeter?	Geometric cabinet
measurement.	multiplication and addition.	Can different shapes have the same perimeter?	Measurement materials
3.MD.C.5.a			Investigations Unit 4 –
A square with side length 1 unit, called "a unit	Recognize perimeter as an	How can we find perimeter of	Perimeter, Area, and
square," is said to have "one square unit" of area, and can be used to measure area.	attribute of plane figures, and distinguish between	an irregular shape?	Polygons
	linear and area	How can we find an unknown	<u>Assessments</u>
3.MD.C.5.b	measurements.	side length if we know the	<u>Formative</u>
A plane figure which can be covered without		perimeter and some side	Student Exercises
gaps or overlaps by <i>n</i> unit squares is said to	Rectangles can have the	lengths?	Peer Questioning
have an area of <i>n</i> square units.	same perimeter and		Classroom
	different areas of the	What are some possible	Discussions
3.MD.C.6	same area and different	sources of measurement error?	Vocabulary checks
Measure areas by counting unit squares	perimeters.		Problem Solving
(square cm, square m, square in, square ft, and		Learning Targets	Challenges
improvised units).	Reason with shapes and	Students will:	Exit Tickets
	their attributes.	 Measure and find the 	
3.MD.C.7		perimeter of 2-D	Summative
Relate area to the operations of multiplication		figures using U.S.	Montessori Three-
and addition.		standard and metric	Period Lesson
		units.	including

 3.MD.C.7.d Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems. 3.MD.D.8 Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters. 	•	Find the area of 2-D figures using U.S. standard and metric units. Categorize quadrilaterals, including squares, rhombuses and rectangles, based on their attributes.	 introduction, practice, and assessment of the % of concept mastery. Problem-based interactive Learning activities Performance assessment
3.G.A.1 Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.			

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
2.0.1.1	<u></u>	Learning Targets	Assessments
3.OA.A.1	Division can be	Essential Questions	Montessori Materials
Interpret products of whole numbers, e.g.,	represented as equal	What are the multiples of 3, 4,	Bead Cabinet
interpret 5×7 as the total number of objects in	groups.	and 6?	
5 groups of 7 objects each. For example,			Multiplication board,
describe a context in which a total number of	Distributive property	What is the relationship	tickets, and finger charts
objects can be expressed as 5×7.		between multiplication and	
	Represent and solve	division?	Division board, tickets, and
3.OA.A.2	problems using		finger charts
Interpret whole-number quotients of whole	multiplication and	How can knowing the	
numbers, e.g., interpret 56÷8 as the number of	division.	multiplication facts be used to	Place value/expanded
objects in each share when 56 objects are		solve division problems?	notation cards
partitioned equally into 8 shares, or as a	Represent and compare		
number of shares when 56 objects are	multiplication problems	What happens to a product	Investigations Unit 5 – Cube
partitioned into equal shares of 8 objects each.	with pictures, diagrams, or	when we double one factor in a	Patterns, Arrays, and
For example, describe a context in which a	models.	multiplication expression?	Multiples of 10
number of shares or a number of groups can			
be expressed as 56÷8.	Multiply and divide within	What do parentheses in a	Assessments
•	100.	problem mean?	Formative
3.OA.A.3			Student Exercises
Use multiplication and division within 100 to	Solve problems using the	Learning Targets	Peer Questioning
solve word problems in situations involving	four operations, and	Students will:	Classroom
equal groups, arrays, and measurement	identify patterns in	Solve division problems	Discussions
quantities, e.g., by using drawings and	arithmetic.	(2-digit number divided	Vocabulary checks
equations with a symbol for the unknown		by a single-digit	
number to represent the problem.	Use place value	number).	Problem Solving Challenges
number to represent the problem.	understanding and	numberj.	Challenges
			 Exit Tickets

3.0A.A.4	properties of operations	Solve multiplication	
 3.OA.A.4 Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations 8×?=48, 5=?÷3, 6×6=?. 3.OA.B.5 Apply properties of operations as strategies to multiply and divide. Examples: If 6×4=24 is known, then 4×6=24 is also known. (Commutative property of multiplication.) 3×5×2 can be found by 3×5=15, then 15×2=30, or by 5×2=10, then 3×10=30. (Associative property of multiplication.) Knowing that 8×5=40 and 8×2=16, one can find 8×7as 8×(5+2)=(8×5)+(8×2)=40+16=56. (Distributive property.) 3.OA.B.6 Understand division as an unknownfactor problem. For example, find 32÷8 by finding the number that makes 32 when multiplied by 8. 3.OA.C.7 Fluently multiply and divide within 100, using 	properties of operations to perform multi-digit arithmetic. Use place-value understanding and properties of operations to perform multi-digit arithmetic. Geometric measurement: Understand the concept of area and relate area to multiplication and addition.	 Solve multiplication and division word problems and write equations to represent the problems. Multiply a single-digit number by a multiple of 10, up to 90. Represent and explain the relationship between multiplication and division. Solve multi-step problems involving multiplication and addition. Demonstrate fluency with multiplication facts to 10×10. 	 Summative Montessori Three- Period Lesson including introduction, practice, and assessment of the % of concept mastery. Problem-based interactive Learning activities Performance assessment
strategies such as the relationship between multiplication and division (e.g., knowing that			

8×5=40, one knows 40÷5=8) or properties of		
operations. By the end of Grade 3, know from		
memory all products of two one-digit numbers.		
3.OA.D.9		
Identify arithmetic patterns (including patterns		
in the addition table or multiplication table),		
and explain them using properties of		
operations. For example, observe that 4 times		
a number is always even, and explain why 4		
times a number can be decomposed into two		
equal addends.		
3.NBT.A.3		
Multiply one-digit whole numbers by multiples		
of 10 in the range 10–90 (e.g., 9×80, 5×60)		
using strategies based on place value and		
properties of operations.		
3.MD.C.7.b		
Multiply side lengths to find areas of rectangles		
with whole number side lengths in the context		
of solving real world and mathematical		
problems, and represent whole-number		
products as rectangular areas in mathematical		
reasoning.		
3.MD.C.7.c		
Use tiling to show in a concrete case that the		
area of a rectangle with whole-number side		
lengths a and b+c is the sum of a×b and a×c.		

Use area models to represent the distributive		
property in mathematical reasoning.		

Unit Description: I this unit students focus on un about equivalent fractions; comparing fractions; knowledge of fractions and fraction equivalents	and using notation to model	fractions and fraction relationships	. Students build their
Standards Alignment	Unit Concept/Big Ideas	Essential Questions/ Learning Targets	Instructional Materials/ Assessments
3.NF.A.1	Develop an understanding	Essential Questions	Montessori Materials
Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned	of fractions as numbers.	How can we represent fractional parts of an area?	Fraction skittles
into b equal parts; understand a fraction a/b as the quantity formed by a part of size 1/b.	Fractional parts are constructed of unit	How can fractions be	Fraction box
3.NF.A.2	fractions.	represented on a number line?	Fraction insets
Understand a fraction as a number on the number line; represent fractions on a number	A unit fraction is a number represented on a number	How can representations help us to visualize how fractions	Number lines
line diagram.	line.	relate to each other?	Geometric cabinet
3.NF.A.2. a	The size of a fraction is	Learning Targets	Investigations Unit 6 – Fair
Represent a fraction 1/b on a number line	determined by the size of	Students will:	Shares and Fractions on
diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts.	the whole.	 Partition a quantity into equal parts, and 	Number Lines
Recognize that each part has size 1/b and that	Different-shaped pieces	name those parts as	<u>Assessments</u>
the endpoint of the part based at 0 locates the	are the same fraction of a	fractions.	<u>Formative</u>
number 1/b on the number line.	whole.		 Student Exercises
		Represent fractions as	 Peer Questioning
3.NF.A.2. b	Represent and interpret	numbers on a number	 Classroom
Represent a fraction a/b on a number line	data.	line.	Discussions
diagram by marking off a length 1/b from 0.			 Vocabulary checks
Recognize that the resulting interval has size	Reason with shapes and	Compare fractions with	 Problem Solving
a/b and that its endpoint locates the number	their attributes.	the same numerator or	Challenges
a/b on the number line.			 Exit Tickets

	same denominator by
3.NF.A.3	reasoning Summative
Explain equivalence of fractions in special	about their size. • Montessori Three-
cases, and compare fractions by reasoning	Period Lesson
about their size.	Identify equivalent including
	fractions. introduction,
3.NF.A.3.a	practice,
Understand two fractions as equivalent (equal)	Measure to the nearest and assessment of
if they are the same size, or the same point on	fourth inch and the %
a number line.	represent of concept mastery.
	measurement data to
3.NF.A.3.b	the nearest fourth inch interactive Learning
Recognize and generate simple equivalent	on a line plot. activities
fractions, e.g., 1/2=2/4, 4/6=2/3. Explain	Performance
why the fractions are equivalent, e.g., by using	assessment
a visual fraction model.	
3.NF.A.3.c	
Express whole numbers as fractions, and	
recognize fractions that are equivalent to	
whole numbers. Examples: Express 3 in the	
form 3=3/1; recognize that 6/1=6; locate 4/4	
and 1 at the same point of a number line	
diagram.	
3.NF.A.3.d	
Compare two fractions with the same	
numerator or the same denominator	
by reasoning about their size. Recognize that	
comparisons are valid only when the two	
fractions refer to the same whole. Record the	

results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.		
3.MD.B.4 Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units—whole numbers, halves, or quarters.		
3.G.A.2 Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as 1/4of the area of the shape.		

Unit Seven: How Many Miles? Addition, Subtraction, and the Number System 2Timeline: 18 SessionsUnit Description: In this unit students focus on understanding the operations of addition and subtraction, and adding and subtracting fluently.Students add multiples of 10 and 100 to, and subtract them from, 3-digit numbers. They use multiples of 100 as landmarks as they solveaddition and subtraction problems with 3-digit numbers, including problems that involve liquid volume and mass.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
		Learning Targets	Assessments
3.OA.D.8	Solve problems using the	Essential Questions	Montessori Materials
Solve two-step word problems using the four	four operations, and	How can we solve multi-step	
operations. Represent these problems using	identify patterns in	word problems?	Stamp game
equations with a letter standing for the	arithmetic.		
unknown quantity. Assess the reasonableness		How can we solve addition	Bead frame
of answers using mental computation and	Solve addition problems	problems with more than 2	
estimation strategies including rounding.	with more than 2	addends?	Teacher-made or purchased
	addends.		problems
3.NBT.A.2		How can we solve addition	
Fluently add and subtract within 1000 using	Use place-value	problems with 3- or 4-digit	Measurement materials
strategies and algorithms based on place value,	understanding and	numbers?	
properties of operations, and/or the	properties of operations		Investigations Unit 7 – How
relationship between addition and subtraction.	to perform multi-digit	How do we know when to	Many Miles?
	arithmetic.	measure in volume, mass, or	
3.MD.A.2		length?	Assessments
Measure and estimate liquid	Use place value		<u>Formative</u>
volumes and masses of objects using standard	understanding and	Learning Targets	 Student Exercises
units of grams (g), kilograms (kg), and liters (I).	properties of operations	Students will:	Peer Questioning
Add, subtract, multiply, or divide to solve	to perform multi-digit	Solve addition and	Classroom
one-step word problems involving masses or	arithmetic.	subtraction	Discussions
volumes that are given in the same units, e.g.,		problems involving	 Vocabulary checks
by using drawings (such as a beaker with a	Solve problems involving	masses or volumes.	Problem Solving
measurement scale) to represent the problem.	measurement and		Challenges
	estimation of intervals of		Exit Tickets
	times, liquid volumes,		

masses of objects, and money.	 Estimate and measure liquid volume and mass using standard units. Solve 3-digit addition problems using at least one strategy fluently. Solve 3-digit subtraction problems fluently. 	Summative•Montessori Three- Period Lesson including introduction, practice, and assessment of the % of concept mastery.•Problem-based interactive Learning activities•Performance
		assessment

Unit Eight: Large Numbers and Multi-Step Problems: Multiplication and Division IIITimeline: 16 SessionsUnit Description: In this unit students focus on solving multiplication and division problems, learning the division facts, identifying arithmetic
patterns, and solving multi-step problems. Students develop strategies to solve multiplication and division problems, including problems with
remainders.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
2.04.4.2		Learning Targets	Assessments
3.OA.A.2	Represent and solve	Essential Questions	Montessori Materials
Interpret whole-number quotients of whole	problems using	Why is it helpful to internalize	Multiplication board,
numbers, e.g., interpret 56÷8 as the number of	multiplication and	division facts?	tickets, and finger charts
objects in each share when 56 objects are	division.		
partitioned equally into 8 shares, or as a		How do we know when to	Division board, tickets, and
number of shares when 56 objects are	Multiply and divide within	measure in volume, mass, or	finger charts
partitioned into equal shares of 8 objects each.	100.	length?	
For example, describe a context in which a			Stamp games
number of shares or a number of groups can	Solve problems using the	What is the relationship	
be expressed as 56÷8.	four operations, and	between perimeter and area?	Bead frames
	identify patterns in		
3.OA.A.3	arithmetic.	Learning Targets	Geometric cabinet
Use multiplication and division within 100 to		Students will:	
solve word problems in situations involving	Solve problems involving	Solve multiplication	Investigations Unit 8 –
equal groups, arrays, and measurement	measurement and	and	Large Numbers and Multi-
quantities, e.g., by using drawings and	estimation of intervals of	division problems	Step Problems
equations with a symbol for the unknown	times, liquid volumes, and	within 100.	
number to represent the problem.	masses of objects.		Assessments
		Demonstrate an	Formative
3.OA.A.4	Geometric measurement:	understanding of	Student Exercises
Determine the unknown whole number in a	Understand the concept	multiplication and	Peer Questioning
multiplication or division equation relating	of area and relate area to	division as involving	Classroom
three whole numbers. For example,	multiplication and	equal groups.	Discussions
determine the unknown number that makes	addition.		Vocabulary checks
the equation true in each of the equations			

8×?=48, 5=?÷3, 6×6=?.	Use tables to identify and interpret arithmetic	 Demonstrate fluency with the 	Problem Solving Challenges
3.OA.B.5	patterns.	division facts.	Exit Tickets
Apply properties of operations as strategies to			
multiply and divide. Examples: If 6×4=24 is		 Solve multi-step 	Summative
known, then 4×6=24 is also known.		problems involving	Montessori Three-
(Commutative property of multiplication.)		more than one	Period Lesson
3×5×2 can be found by 3×5=15, then 15×2=30,		operation.	including
or by 5×2=10, then 3×10=30. (Associative			introduction,
property of multiplication.) Knowing that		 Solve multiplication 	practice,
8×5=40 and 8×2=16, one can find 8×7as		and division problems	and assessment of
8×(5+2)=(8×5)+(8×2)=40+16=56.		involving masses or	the %
(Distributive property.)		volumes.	of concept mastery.
			Problem-based
3.OA.B.6		• Find the area of a	interactive Learning
Understand division as an unknown-		rectangular	activities
factor problem. For example, find 32÷8		array by breaking it	Performance
by finding the number that makes 32 when		apart (using the	assessment
multiplied by 8.		distributive property).	
3.0A.C.7			
Fluently multiply and divide within 100, using			
strategies such as the relationship between			
multiplication and division (e.g., knowing that			
8×5=40, one knows 40÷5=8) or properties of			
operations. By the end of Grade 3, know from			
memory all products of two one-digit numbers.			
3.OA.D.8			

Solve two-step word problems using the four	
operations. Represent these problems using	
equations with a letter standing for the	
unknown quantity. Assess the reasonableness	
of answers using mental computation and	
estimation strategies including rounding.	
3.OA.D.9	
Identify arithmetic patterns (including patterns	
in the addition table or multiplication table),	
and explain them using properties of	
operations. For example, observe that 4 times	
a number is always even, and explain why 4	
times a number can be decomposed into two	
equal addends.	
3.MD.A.2	
Measure and estimate liquid	
volumes and masses of objects using standard	
units of grams (g), kilograms (kg), and liters (l).	
Add, subtract, multiply, or divide to solve	
one-step word problems involving masses or	
volumes that are given in the same units, e.g.,	
by using drawings (such as a beaker with a	
measurement scale) to represent the problem.	
3.MD.C.7.c	
Use tiling to show in a concrete case that the	
area of a rectangle with whole-number side	
lengths a and b+c is the sum of a×b and a×c.	

Use area models to represent the distributive		
property in mathematical reasoning.		

Attachment 4D - Math Maps

Sussex Montessori School Mathematics Curriculum 4th Grade

Curriculum Framework for Mathematics

 School: Sussex Montessori School
 Curricular Resources: Montessori Materials and Lessons / Investigations 3
 Grade: 4

 Unit One: Multiplication and Division I
 Timeline: 12 Sessions
 Grade: 4

 Unit Description: In this unit students focus on using arrays and multiplicative comparison problems to understand multiplication, and gaining
 Grade: 4

familiarity with factors and multiples. Students use arrays to model multiplication situations and to find factors and identify prime numbers to 100.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
		Learning Targets	Assessments
4.OA.A.1	Determining multiples and	Essential Questions:	Montessori Materials
Interpret a multiplication equation as a	factors	What is a factor? What is a	Stamp game
comparison, e.g., interpret 35 = 5 × 7 as a		multiple?	
statement that 35 is 5 times as many as 7 and 7	Factors of 100		Checkerboard
times as many as 5. Represent verbal		What are prime numbers?	
statements of multiplicative comparisons as	Using known factors to		Pegboard
multiplication equations.	find related factors for a	How can we find factors using	
	given number (e.g., if	arrays?	Investigations Unit 1 –
4.OA.A.2	4 × 25 = 100, then 8 × 25		Arrays, Factors, and
Multiply or divide to solve word problems	= 200)	Learning Targets:	Multiplicative Comparison
involving multiplicative comparison, e.g., by		Students will:	
using drawings and equations with a symbol for	Using representations to	 Use multiplication to 	<u>Assessments</u>
the unknown number to represent the	show that a factor of a	solve	<u>Formative</u>
problem, distinguishing multiplicative	number is also a factor of	multiplicative	 Student Exercises
comparison from additive comparison.	its multiples (e.g., if 25 is a	comparison problems.	 Peer Questioning
	factor of 100, then 25 is		Classroom
4.OA.B.4	also a factor of 300)	Determine whether	Discussions
Find all factor pairs for a whole number		numbers	 Vocabulary checks
in the range 1–100. Recognize that a whole	Representing	up to 100 are prime or	 Problem Solving
number is a multiple of each of its factors.	multiplicative comparison	composite.	Challenges
Determine whether a given whole number in	problems with		Exit Tickets
the range 1–100 is a multiple of a given one-	multiplication or division	 Find factors of 	
digit number. Determine whether a given	equations	numbers up	<u>Summative</u>

whole number in the range 1–100 is prime or composite.	to 100 and recognize multiples of 1-digit	Montessori Three- Period Lesson
composite.	numbers.	including
4.NBT.B.5	numbers.	introduction,
Multiply a whole number of up to four		practice,
digits by a one-digit whole number, and		and assessment of
multiply two two-digit numbers, using		the %
strategies based on place value and the		of concept mastery.
properties of operations. Illustrate and explain		 Problem-based
the calculation by using equations, rectangular		interactive Learning
arrays, and/or area models.		activities
		Performance
		assessment

Unit Two: Modeling with Data Timeline: 11 Sessions

Unit Description: In this unit students focus on using line plots to represent, describe, and compare measurement data; on modeling realworld problems with mathematics; and on constructing arguments based on data. Students measure and compare the heights of first and fourth graders. They collect measurement data of their choosing, and use line plots to represent and analyze the data.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
		Learning Targets	Assessments
4.MD.A.1	Organizing ordered,	Essential Questions	Montessori Materials
Know relative sizes of measurement units	numerical data to describe	How can we develop and revise	Teacher-made materials to
within one system of units including km, m, cm;	a data set	a data question?	augment what is
kg, g; lb, oz.; l, ml; hr, min, sec. Within a single			commercially available
system of measurement, express	Using a line plot to	How can we use a line plot to	
measurements in a larger unit in terms of a	represent ordered,	represent measurement data?	Investigations Unit 2 –
smaller unit. Record measurement equivalents	numerical data		Generating and
in a two-column table. For example, know that		How can we describe a data	Representing Measurement
1 ft is 12 times as long as 1 in. Express the	Representing two sets of	set?	Data
length of a 4 ft snake as 48 in. Generate a	data in order to compare		
conversion table for feet and inches listing the	them	How can we represent a data	<u>Assessments</u>
number pairs (1, 12), (2, 24), (3, 36),		set?	<u>Formative</u>
	Considering how well a		 Student Exercises
4.MD.A.2	data representation	How can we collect and	 Peer Questioning
Use the four operations to solve word	communicates	accurately record data?	Classroom
problems involving distances, intervals of time,	information to an		Discussions
liquid volumes, masses of objects, and money,	audience	Learning Targets	 Vocabulary checks
including problems involving simple fractions or		Students will:	 Problem Solving
decimals, and problems that require expressing	Using a line plot to	 Use a line plot to 	Challenges
measurements given in a larger unit in terms of	represent measurement	organize,	Exit Tickets
a smaller unit. Represent measurement	data that includes	represent, and analyze	
quantities using diagrams such as number line	fractions	measurement data	Summative
diagrams that feature a measurement scale.		about two groups in	Montessori Three-
	Describing the shape of a	order to compare the	
4.MD.B.4	data set	two groups.	

Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.	Describing what is typical about the data set as a whole Describing and interpreting data that compare two groups	 Use a line plot to organize, represent, and analyze measurement data about two groups in order to compare the two groups. 	 Period Lesson including introduction, practice, and assessment of the % of concept mastery. Problem-based interactive Learning
	Comparing two sets of data using the shape of the data	 Design a data question that involves measurement to compare two 	activitiesPerformance assessment
	Developing arguments based on data	groups.	
	Recording and keeping track of data	 Use a line plot to represent measurement data that includes fractions. 	
	Developing and revising a data question		

Montessori Three-

•

Unit Three: Multiplication and Division 2 Timeline: 18 Sessions Unit Description: In this unit students focus on solving multiplication problems with 2-digit numbers, understanding the meaning and structure of, and the relationship between, multiplication and division, and using that understanding to solve multiplication and division problems. Students use marked and unmarked arrays to represent multiplication strategies that involve breaking numbers apart. Unit Concept/Big Ideas **Essential Questions/** Instructional Materials/ **Standards Alignment** Learning Targets Assessments Solving division problems **Montessori Materials** 4.0A.A.1 **Essential Questions:** Interpret a multiplication equation by making groups of the How can we use the Stamp Game relationship between as a comparison, e.g., interpret divisor $35 = 5 \times 7$ as a statement that 35 is 5 times as multiplication and division to Checkerboard solve division problems? many as 7 and 7 times as many as 5. Represent Using the relationship between multiplication verbal statements of multiplicative Million Cube comparisons as and division to solve How can we use pictures, multiplication equations. division problems diagrams, or models to Investigations Unit 3 -**Multiple Towers and** represent multiplication 4.0A.A.2 Using known multiples of problems? **Cluster Problems** Multiply or divide to solve word a number to find other problems involving multiplicative comparison, multiples of that number How can we use known e.g., by using drawings and equations with a multiples of a number to find Assessments symbol for the unknown number to represent Finding multiples of 2-digit other multiples of that Formative the problem, distinguishing multiplicative numbers number? Student Exercises • comparison Peer Questioning • from additive comparison. Understanding the effect How can we find multiples of 2-• Classroom of multiplying by a digit numbers? Discussions 4.0A.A.3 multiple of 10 Vocabulary checks Solve multistep word problems Learning Targets Problem Solving posed with whole numbers and having whole-Determining the effect on Students will: Challenges number answers using the four operations, the product when one • Multiply a 2-digit Exit Tickets • including problems in which remainders must factor is doubled and one number by 1-digit and be interpreted. Represent these problems factor is halved small 2-digit numbers Summative using (e.g., 12, 15, 20), using

		1
equations with a letter standing for the	strategies that involve	Period Lesson
unknown quantity. Assess the reasonableness	breaking the numbers	including
of answers using mental computation and	apart.	introduction,
estimation strategies including rounding.	Multiply a number by a	practice,
	multiple of 10.	and assessment of
4.NBT.B.5		the %
Multiply a whole number of up to four	Solve division problems	of concept mastery.
digits by a one-digit whole number, and	(2-digit and small 3-	 Problem-based
multiply two two-digit numbers, using	digit numbers divided	interactive Learning
strategies based on place value and the	by 1-digit numbers),	activities
properties of operations. Illustrate and explain	including some that	Performance
the calculation by using	result in a remainder.	assessment
equations, rectangular arrays, and/or area		
models.		
4.NBT.B.6		
Find whole-number quotients and		
remainders with up to four-digit dividends and		
one-digit divisors, using strategies based on		
place value, the properties of operations,		
and/or the relationship between multiplication		
and		
division. Illustrate and explain the calculation		
by using equations,		
rectangular arrays, and/or area models.		

symmetry and area. Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
		Learning Targets	Assessments
4.OA.A.3	Using U.S. standard units	Essential Questions:	Montessori Materials
Solve multistep word problems	to measure lengths longer	What is perimeter?	Montessori protractor
posed with whole numbers and having whole-	than the measuring tool		
number answers using the four operations,		What is area?	Box of Sticks
including problems in which remainders must	Measuring accurately		
be interpreted. Represent these problems		How can we find the area of a	Investigations Unit 4 –
using equations with a letter standing for the	Using U.S. standard and	rectangle?	Measuring and Classifying
unknown quantity. Assess the reasonableness	metric units to accurately		Shapes
of answers using mental computation and	measure length	What are polygons?	
estimation strategies including rounding.			<u>Assessments</u>
	Estimating lengths in	How can we make polygons?	<u>Formative</u>
4.NBT.B.5	common units		Student Exercises
Multiply a whole number of up to four	(centimeter, inch, foot,	How can we find the area of	Peer Questioning
digits by a one-digit whole number, and	yard, meter)	polygons?	Classroom
multiply two two-digit numbers, using			Discussions
strategies based on place value and the	Identifying measurement	What are the parts of a line?	Vocabulary checks
properties of operations. Illustrate and explain	equivalents		Problem Solving
the calculation by using		How can we distinguish angles?	Challenges
equations, rectangular arrays, and/or area	Converting measurements		Exit Tickets
models.	from larger units to	How do we use a protractor?	
	smaller units		Summative
4.NBT.B.6		How can create specific angles?	Montessori Three-
Find whole-number quotients and remainders	Finding perimeter using		Period Lesson
with up to four-digit dividends and one-digit	standard units	What is the line of symmetry?	including
divisors, using strategies based on place value,			introduction,
the properties of operations, and/or the		Learning Targets	practice,

relationship between multiplication and	Using a generalizable	Students will:	and assessment of
division. Illustrate and explain the calculation	method to determine the	Convert linear	the %
by using equations, rectangular arrays, and/or	perimeter of a rectangle	measurements	of concept mastery.
area models.		from a larger unit to a	 Problem-based
	Identifying right, acute,	smaller unit.	interactive Learning
4.MD.A.1	and obtuse angles		activities
Know relative sizes of measurement		• Draw and identify lines	Performance
units within one system of units including km,	Identifying and creating	and angles, including	assessment
m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a	90-degree angles	parallel and	
single system of measurement, express		perpendicular lines,	
measurements in a larger unit in terms of a	Using known angles to	and classify polygons	
smaller unit. Record measurement equivalents	build and find the	by properties of their	
in a two-column table. For example, know that	measure of other angles	sides and angles.	
1 ft is 12 times as long as 1 in. Express the			
length of a 4 ft snake as 48 in. Generate a	Drawing angles of a	 Add or subtract angles 	
conversion table for feet and inches listing the	specific measure	to determine the size	
number pairs (1, 12), (2, 24), (3, 36),		of angles.	
	Understanding the		
4.MD.A.2	relationship between the	Use a protractor to	
Use the four operations to solve word	degree measure of an	measure angles and	
problems involving distances, intervals of time,	angle and rotation in a	sketch angles of	
liquid volumes, masses of objects, and money,	circular arc	specific sizes.	
including problems involving simple fractions or			
decimals, and problems that require expressing	Measuring angles using a	 Identify lines of 	
measurements given in a larger unit in terms of	protractor	symmetry in polygons.	
a smaller unit. Represent measurement			
quantities using diagrams such as number line	Finding the area of		
diagrams that feature a measurement scale.	symmetrical shapes		
4.MD.A.3	Dividing irregular polygons		
	into two shapes that have		

Apply the area and perimeter formulas for	equal area	
rectangles in real world and mathematical		
problems. For example, find the width of a	Using symmetry and	
rectangular room given the area of the flooring	congruence to identify	
and the length, by viewing the area formula as	equal areas	
a multiplication equation with an unknown		
factor.	Finding the area of	
	polygons using square	
4.MD.C.5	units	
Recognize angles as geometric shapes that are		
formed wherever two rays share a common	Finding the area of	
endpoint, and understand concepts of angle	polygons by decomposing	
measurement:	shapes	
4.MD.C.5.a	Finding the area of a	
An angle is measured with reference	rectangle	
to a circle with its center at the common		
endpoint of the rays, by considering the	Using a generalizable	
fraction of the circular arc between the points	method to determine the	
where the two rays intersect the circle. An	area of a rectangle	
angle that turns through 1/360 of a circle is	C C	
called a "one-degree angle," and can be used to	Determining an unknown	
measure angles.	dimension of a rectangle	
č	when one dimension and	
4.MD.C.5.b	the area are known	
An angle that turns through <i>n</i> one-degree		
angles is said to have an angle measure of <i>n</i>	Defining polygons as	
degrees.	closed figures with line	
5	segments as sides that	
4.MD.C.6	come together at points	
-	called vertices	

Measure angles in whole-number degrees	
using a protractor. Sketch angles of specified	Identifying geometric
measure.	figures including: points,
	lines, rays, line segments,
4.MD.C.7	and parallel and
Recognize angle measure as additive.	perpendicular lines
When an angle is decomposed into non-	
overlapping parts, the angle measure of the	Identifying shapes with
whole is the sum of the angle measures of the	parallel or perpendicular
parts. Solve addition and subtraction problems	sides
to find unknown angles on a diagram in real	
world and mathematical problems, e.g., by	Combining polygons to
using an equation with a symbol for the	make new polygons
unknown angle measure.	
	Recognizing number of
4.G.A.1	sides as a descriptor of
Draw points, lines, line segments, rays, angles	various polygons
(right, acute, obtuse), and perpendicular and	
parallel lines. Identify these in two-dimensional	Classifying polygons by
figures.	attribute, including
	number and relative
4.G.A.2	length of sides, size of
Classify two-dimensional figures based on the	angles, and absence or
presence or absence of parallel or	presence of parallel or
perpendicular lines, or the presence or absence	perpendicular sides
of angles of a specified size. Recognize right	
triangles as a category, and identify right	Determining lines of
triangles.	symmetry in a two-
	dimensional figure
4.G.A.3	_
Recognize a line of symmetry for a two-	

dimensional figure as a line across the figure	Making designs with	
such that the figure can be folded along the line	mirror symmetry	
into matching parts. Identify line-symmetric		
figures and draw lines of symmetry.		

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/ Learning Targets	Instructional Materials/ Assessments
4.OA.A.3	Reading, writing, and	Essential Questions:	Montessori Materials
Solve multistep word problems	sequencing numbers to	How can we represent addition	Million Cube
posed with whole numbers and having whole-	10,000	and subtraction on a number	
number answers using the four operations,	10,000	line?	Checkerboard
ncluding problems in which remainders must	Understanding the		Checkerbourd
e interpreted. Represent these problems	structure of 10,000 and its	How can we find combinations	Place Value cards
ising	equivalence to one	of 3-digit numbers that add up	
equations with a letter standing for the	thousand 10s, one	to 1,000?	Stamp game
inknown quantity. Assess the reasonableness	hundred 100s, and ten		Stamp game
f answers using mental computation and	1,000s	How can we determine what	Investigations Unit 5 –
estimation strategies including rounding.	1,0003	subtraction strategy to use to	Large Numbers and
	Writing multidigit	solve a problem?	Landmarks
NBT.A.1	v v		Lanumarks
	numbers using expanded form	Loorning Torgets	Accessments
Recognize that in a multi-digit whole	Iorm	Learning Targets Students will:	<u>Assessments</u> Formative
number, a digit in one place represents ten			
imes what it represents in the place to its	Using place-value	Read, write, and	Student Exercises
ight. For example, recognize that	understanding to round	compare	Peer Questioning
$00 \div 70 = 10$ by applying concepts of place	numbers to any place	numbers up to	 Classroom
alue and division.		1,000,000 and round	Discussions
	Adding 3- and 4-digit	them to any place.	 Vocabulary checks
.NBT.A.2	numbers fluently		 Problem Solving
ead and write multi-digit whole		Fluently solve	Challenges
numbers using base-ten numerals, number	Using clear and concise	multidigit	 Exit Tickets
names, and expanded form. Compare two	notation to record	addition and	
multi-digit numbers based on meanings of the	addition strategies	subtraction problems	<u>Summative</u>
		using a variety of	Montessori Three

			1
digits in each place, using > , =, and < symbols	Understanding the steps	strategies, including	Period Lesson
to record the	and notation of the U.S.	the U.S. standard	including
results of comparisons.	standard algorithm for	algorithm.	introduction,
	addition	 Use addition and 	practice,
4.NBT.A.3		subtraction to solve	and assessment of
Use place value understanding to round multi-	Adding using the U.S.	word problems	the %
digit whole numbers to any place.	standard algorithm for	involving	of concept mastery.
	addition	measurement.	 Problem-based
4.NBT.B.4			interactive Learning
Fluently add and subtract multi-digit	Solving subtraction		activities
whole numbers using the standard algorithm.	problems using different		Performance
	strategies		assessment
4.MD.A.2			assessment
Use the four operations to solve word	Understanding the		
problems involving distances, intervals of time,	meaning of the steps and		
liquid volumes, masses of objects, and money,	notation of the U.S.		
including problems involving simple fractions or	standard algorithm for		
	-		
decimals, and problems that require expressing	subtraction		
measurements given in a larger unit in terms of			
a smaller unit. Represent measurement	Using story contexts and		
quantities using diagrams such as number line	representations to		
diagrams that	support explanations		
feature a measurement scale.	about related subtraction		
	expressions		

Unit Six: Fractions and Decimals Timeline: 24 Sessions

Unit Description: In this unit students focus on understanding the meaning of fractions and decimals; and comparing fractions and decimals including finding equivalents. Students use contexts and representations such as rectangles (an area model) and number lines (a linear model) to add, subtract, and multiply fractions.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
		Learning Targets	Assessments
4.NBT.A.1	Finding fractional parts of	Essential Questions:	Montessori Materials
Recognize that in a multi-digit whole	a rectangle	How can we represent	Fraction material squares
number, a digit in one place represents ten		fractions greater than 1?	
times what it represents in the place to its	Interpreting the meaning		Fraction box
right. For example, recognize that	of the numerator and the	How can we represent	
700 ÷ 70 = 10 by applying concepts of place	denominator of a fraction	fractions on a number line?	Fraction cabinet
value and division.			
	Representing fractions	How can we identify equivalent	Decimal box materials
4.NF.A.1	greater than 1	fractions?	
Explain why a fraction a/b is equivalent to			Investigations Unit 6 –
a fraction (n × a)/(n × b) by using visual fraction	Reading and writing	What is the relationship	Fraction Cards and Decimal
models, with attention to how the number and	tenths and hundredths	between fractions and	Grids
size of the parts differ even though the two		decimals?	
fractions	Representing tenths and		<u>Assessments</u>
themselves are the same size. Use this principle	hundredths as parts of an	How can we add and subtract	<u>Formative</u>
to recognize and generate equivalent fractions.	area	fractions and mixed numbers?	 Student Exercises
			 Peer Questioning
4.NF.A.2	Identifying equivalent	How do we multiply fractions	Classroom
Compare two fractions with different	fractions and explaining	by a whole number?	Discussions
numerators and different denominators, e.g.,	why they are equivalent		Vocabulary checks
by creating common denominators or		Learning Targets	Problem Solving
numerators, or by comparing to a benchmark	Identifying relationships	Students will:	Challenges
fraction such as 1/2. Recognize that	between unit fractions	 Identify equivalent 	Exit Tickets
comparisons are valid only when the two	when one denominator is	fractions	
fractions refer to the same whole.	a multiple of the other		Summative

 Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model. 4.NF.B.3 Understand a fraction a/b with a > 1 as a sum of fractions 1/b. 4.NF.B.3.a Understand addition and subtraction of fractions as joining and separating parts referring to the same whole. 4.NF.B.3.b Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: 3/8 = 1/8 + 1/8; 3/8 = 1/8 + 2/8; 2 1/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8. 4.NF.B.3.c Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and 	 (e.g., halves and fourths, thirds and sixths) Comparing the same fractional parts of different-sized wholes Comparing and ordering fractions and justifying their order through reasoning about fraction equivalencies and relationships Representing fractions on a number line Comparing and ordering decimals and justifying their order through reasoning about representations and justifying their order through reason fractions to the landmarks 0, 1/2, 1, and 2 Comparing and ordering decimals and justifying their order through reasoning about representations and the meaning of the numbers 	 and explain why they are equivalent. Compare fractions with like and unlike denominators. Add and subtract fractions and mixed numbers with like denominators. Multiply a fraction by a whole number. Read, write, and compare decimals in tenths and hundredths. Add tenths and hundredths. Represent data on a line plot including fourths and eighths. 	 Montessori Three- Period Lesson including introduction, practice, and assessment of the % of concept mastery. Problem-based interactive Learning activities Performance assessment
the relationship between addition and subtraction. 4.NF.B.3.d			

Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.		
4.NF.B.4 Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.		
4.NF.B.4. a Understand a fraction a/b as a multiple of 1/b. For example, use a visual fraction model to represent 5/4 as the product 5 \times (¼), recording the conclusion by the equation 5/4 = 5 \times (¼).		
4.NF.B.4.c Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat 3/8 of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?		
4.NF.C.5		

Express a fraction with denominator 10 as an		
equivalent fraction with denominator		
100, and use this technique to add two		
fractions with respective denominators 10 and		
100. For example, express 3/10 as		
30/100, and add 3/10 + 4/100 = 34/100.		
4.NF.C.6		
Use decimal notation for fractions with		
denominators 10 or 100. For example, rewrite		
0.62 as 62/100; describe a length as 0.62		
meters; locate 0.62 on a number line diagram.		
4.NF.C.7		
Compare two decimals to hundredths		
by reasoning about their size. Recognize that		
comparisons are valid only when the two		
decimals refer to the same whole. Record the		
results of comparisons with the symbols >, =, or		
<, and justify the conclusions, e.g., by using a		
visual model.		
4.MD.A.2		
Use the four operations to solve word		
problems involving distances, intervals of time,		
liquid volumes, masses of objects, and money,		
including problems involving simple fractions or		
decimals, and problems that require expressing		
measurements given in a larger unit in terms of		
a smaller unit. Represent measurement		

quantities using diagrams such as number line diagrams that		
feature a measurement scale.		
4.MD.B.4		
Make a line plot to display a data set of		
measurements in fractions of a unit		
(1/2, 1/4, 1/8). Solve problems involving		
addition and subtraction of fractions by using		
information presented in line plots. For		
example, from a line plot find and interpret the		
difference in length		
between the longest and shortest specimens in		
an insect collection.		

Unit Seven: Multiplication and Division 3Timeline: 18 SessionsUnit Description: In this unit students focus on the operations of multiplication and division, including problems involving converting
measurements. Students refine their strategies for solving multiplication problems with two 2-digit numbers and with a 4-digit number and a
1-digit number, and they use the relationship between multiplication and division to develop and practice strategies for solving division
problems with up to a 4-digit dividend and a 1-digit divisor.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/ Learning Targets	Instructional Materials/ Assessments
4.OA.A.2	Identifying factors of a	Essential Questions:	<u>`Montessori Materials</u>
Multiply or divide to solve word problems involving multiplicative comparison,	number	How can we use pictures or diagrams, including arrays and	Peg board
e.g., by using drawings and equations with a symbol for the unknown number to represent	Solving division problems by breaking the problem	pictures of groups to represent a multiplication problem?	Stamp game
the problem, distinguishing multiplicative comparison from additive comparison.	into parts Representing a division problem with pictures or	How can we estimate answers to division problems?	Division with hierarchical materials (Test tube division)
4.OA.A.3 Solve multistep word problems posed with whole numbers and having whole-	diagrams, including arrays, and pictures of groups	How can we use multiples of 10 to solve division problems?	Investigations Unit 7: How many Packages and Groups?
number answers using the four operations, including problems in which remainders must	Solving multiplication problems by breaking a	How can we use breaking apart, reordering, rounding, or	<u>Assessments</u>
be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. 4.NBT.B.5 Multiply a whole number of up to four	 problem into smaller parts and combining the sub- products Dividing a 4-digit number by a 1-digit number Breaking apart, reordering, rounding, or changing 	changing numbers mentally to determine a reasonable estimate? <u>Learning Targets</u> Students will: • Multiply two 2-digit numbers and up to a 4- digit number by a 1- digit number.	 Formative Student Exercises Peer Questioning Classroom Discussions Vocabulary checks Problem Solving Challenges Exit Tickets

digits by a one-digit whole number, and	numbers mentally to		Summative
multiply two two-digit numbers, using	determine a reasonable	Solve division problems	Montessori Three-
strategies based on place value and the	estimate	with up to 4-digit	Period Lesson
properties of operations. Illustrate and explain		dividends and 1-digit	including
the calculation by using	Using four operations to	divisors.	introduction,
equations, rectangular arrays, and/or area	solve word problems		practice,
models.	involving measurement	 Solve measurement and conversion 	and assessment of the %
4.NBT.B.6	Using a story problem	problems.	of concept mastery.
Find whole-number quotients and	represented by a		 Problem-based
remainders with up to four-digit dividends and	multiplication expression		interactive Learning
one-digit divisors, using strategies based on	to keep track of parts of		activities
place value, the properties of operations,	the problem		Performance
and/or the relationship between multiplication			assessment
and	Converting measurements		
division. Illustrate and explain the calculation	in larger units to smaller		
by using equations,	units		
rectangular arrays, and/or area models.			
	Making tables of		
4.MD.A.1	equivalent measurements		
Know relative sizes of measurement			
units within one system of units including km,	Using multiplication to		
m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a	convert measurements		
single system of			
measurement, express measurements	Using the four operations		
in a larger unit in terms of a smaller unit.	to solve word problems		
Record measurement equivalents in a two	involving measurements		
column table. For example, know that 1 ft is 12			
times as long as 1 in. Express the length of a 4 ft	Solving multi-step		
snake as 48 in. Generate a conversion table for	problems		

feet and inches listing the number pairs (1, 12),	Writing equations using a	
(2, 24), (3, 36),	letter for the unknown	
	quantity	
4.MD.A.2		
Use the four operations to solve word		
problems involving distances, intervals of time,		
liquid volumes, masses of objects, and money,		
including problems involving simple fractions or		
decimals, and problems that require expressing		
measurements given in a larger unit in terms of		
a smaller unit. Represent measurement		
quantities using diagrams such as number line		
diagrams that		
feature a measurement scale.		

to model situations. Two contexts (Penny Jars an			
Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
		Learning Targets	Assessments
4.OA.A.3	Using tables to model	Essential Questions:	Montessori Materials
Solve multistep word problems	situations	What are the features of a	Teacher-made materials to
posed with whole numbers and having whole-		pattern?	
number answers using the four operations,	Using symbolic notation to		augment what is
including problems in which remainders must	model situations	How can we develop a rule that	commercially available
be interpreted. Represent these problems		describes a pattern?	Investigations Unit: Penny
using equations with a letter standing for the	Using letters in equations		Jars and Towers
unknown quantity. Assess the reasonableness	to represent unspecified	Learning Targets	Jais and Towers
of answers using mental computation and	quantities	Students will:	<u>Assessments</u>
estimation strategies including rounding.		Model the	
	Generating number	mathematics of a	<u>Formative</u>
4.OA.C.5	patterns and identifying	situation with tables	 Student Exercises
Generate a number or shape pattern	features of the pattern	and with mathematical	Peer Questioning
that follows a given rule. Identify apparent		notation, including	Classroom
features of the pattern that were not explicit in	Articulating a rule that	using letters to	Discussions
the rule itself. For example, given the rule "Add	describes a number	represent unspecified	Vocabulary checks
3" and the starting number 1, generate terms	pattern	quantities.	 Problem Solving
in the resulting sequence and observe that the			Challenges
terms appear to alternate between odd and	Comparing situations	 Solve multi-step word 	Exit Tickets
even numbers. Explain informally why the	represented by arithmetic	problems using the	
numbers will continue to alternate in this way.	sequences	four operations.	<u>Summative</u>
			Montessori Three-
	Analyzing arithmetic	Generate a number	Period Lesson
	patterns to solve	pattern that follows a	including
	problems	given rule and analyze	introduction,
		features of the pattern	practice,

Representing and solving multi-step problems involving more than one operation	in order to solve problems.	 and assessment of the % of concept mastery. Problem-based interactive Learning activities Performance assessment
---	--------------------------------	---

Attachment 4D - Math Maps

Sussex Montessori School Mathematics Curriculum 5th Grade

Curriculum Framework for Mathematics

School: Sussex Montessori School	Curricular Resources: Montessori N	<u> 1aterials and Lessons / Investiga</u>	<u>tions 3</u> Grade: <u>5</u>
Unit One: Multiplication and Division 1 Timeline: 19 Sessions			
Unit Description: In this unit students focus on the operations of multiplication and division. Students refine their strategies for solving			
multiplication problems with 2-digit numbers, and use the relationship between multiplication and division to develop and practice strategies			
for solving division problems. They use order of operations to solve computation problems			
Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
		Learning Targets	Assessments
5.OA.A.1	Using arrays to represent	Essential Questions:	Montessori Materials
Use parentheses, brackets, or braces in	multiplication	How can knowing the	Stamp Game
numerical expressions, and evaluate		properties of numbers help us	
expressions with these symbols.	Determining whether one	solve problems?	Checker Board Materials
	number is a factor or		
5.OA.A.2	multiple of another	What strategies can we use to	Investigations Unit 1 –
Write simple expressions that record		solve 2-digit by 2-digit	Puzzles, Clusters, and
calculations with numbers, and interpret	Identifying prime, square,	multiplication problems?	Towers
numerical expressions without evaluating	even, and odd numbers		
them. For example, express the calculation		How do we multiply by 10 and	Assessments
"add 8 and7, then multiply by 2" as $2 \times (8 + 7)$.	Using properties (even,	what happens to our product	<u>Formative</u>
Recognize that 3 × (18932 + 921) is three times	odd, prime, square) and	when we do?	 Student Exercises
as large as 18932 +921, without having to	relationships (factor,		 Peer Questioning
calculate the indicated sum or product.	multiple) of numbers to	What is the order of	Classroom
	solve problems	operations? Why is it	Discussions
5.NBT.A.2		important to know? What	Vocabulary checks
Explain patterns in the number of zeros of the	Identifying and learning	happens if the order is not	Problem Solving
product when multiplying a number by powers	multiplication facts not	followed?	Challenges
of 10, and explain patterns in the placement of	yet fluently known		Exit Tickets
the decimal point when a decimal is		How can we use a picture or	
Multiplied or divided by a power of 10. Use	Solving 2-digit by 2-digit	diagram to represent a division	Summative
whole-number exponents to denote powers	multiplication problems	problem?	Montessori Three-
of 10.			

	Describing and comparing	How can I use the	Period Lesson
5.NBT.B.6	strategies used to solve	multiplication strategies I know	including
Find whole-number quotients of whole	multiplication problems	to estimate a product of two 2-	introduction,
numbers with up to four-digit dividends		digit numbers?	practice,
and two-digit divisors, using strategies based	Creating a story problem		and assessment of
on place value, the properties of operations,	represented by a	How can knowing multiples of	the %
and/or the relationship between multiplication	multiplication expression	ten help me solve division	of concept mastery.
and division. Illustrate and explain the		problems?	 Problem-based
calculation by using equations, rectangular	Multiplying fluently by		interactive Learning
arrays, and/or area models.	multiples of 10	Learning Targets	activities
		Students will:	Performance
	Comparing multiplication	• Solve 2-digit by 2-digit	assessment
	problems to determine	multiplication	
	which product is greater	problems	
		efficiently.	
	Estimating the product of		
	two numbers	Solve division problems	
		with 1-digit and 2-digit	
	Breaking apart	divisors.	
	multiplication problems		
	efficiently	Use the order of	
		operations to solve	
	Using clear and concise	computation problems.	
	notation		
	Solving problems using		
	the order of operations		
	Writing and interpreting		
	expressions involving		
	grouping symbols		

Representing a division problem with a picture or diagram
Creating a story problem represented by a division expression
Describing and comparing strategies used to solve division problems
Using knowledge of multiples of 10 to solve division problems
Using and interpreting notation that represents division, and relating division and multiplication notations (e.g., $170 \div 15 =$, and× 15 = 170)
Solving division problems with 2-digit divisors
Making sense of remainders in terms of problem contexts

Solving a division problem by breaking the dividend into parts	
Comparing division problems to determine which quotient is greater	

Unit Two: 3-D Geometry and Measurement Timeline: 12 Sessions Unit Description: In this unit students focus on the structure and volume of three-dimensional (3-D) shapes, specifically on rectangular prisms and solids composed of rectangular prisms. Students build models and patterns for boxes that hold quantities of cubes and calculate the volume of these boxes, using a cube as a unit of measure.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/ Learning Targets	Instructional Materials/ Assessments
5.MD.C.3 Recognize volume as an attribute of solid figures and understand concepts of volume	Decomposing 3-D shapes and then recombining them to make a given	Essential Questions: What are the important attributes of 3-D shapes and	Montessori Materials Volume materials
measurement. 5.MD.C.3a	solid Determining the number	how can we use them to create new 3-D shapes?	Geometric solids Investigations Unit 2 –
A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume.	of cubes that will fit into the box made by a given pattern	How do we find the volume of a rectangular prism? How does volume change when	Assessments Formative
 5.MD.C.3b A solid figure which can be packed without gaps or overlaps using <i>n</i> unit cubes is said to have a volume of <i>n</i> cubic units. 5.MD.C.4 Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units. 5.MD.C.5 Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume. 	Developing a strategy for determining the volume of rectangular prisms Designing patterns for boxes with given dimensions Considering how the dimensions of a box change when the volume is changed (doubled or halved)	 How does volume change when we join rectangular prisms? How can we measure a large space – what unit of measure should we use? Learning Targets Students will: Find the volume of rectangular prisms, including the use of volume formulas. 	 Student Exercises Peer Questioning Classroom Discussions Vocabulary checks Problem Solving Challenges Exit Tickets Summative Period Lesson including introduction,

5.MD.C.5a Find the volume of a right rectangular prism	Organizing rectangular packages to fit in	• Find the volume of a solid composed of two	and assessment of the %
with whole-number side lengths by packing it with unit cubes, and show that the volume is	rectangular boxes	rectangular prisms.	of concept mastery.Problem-based
the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.	Using formulas to find the volume of rectangular prisms Finding the volume of a solid composed of two rectangular prisms	 Use standard units to measure volume. 	 Performance assessment
Apply the formulas $V = I \times w \times h$ and $V = b \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems.	Designing a box that can be completely filled with several differently-shaped rectangular packages Determining the volume,		
5.MD.C.5c Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping	in cubic centimeters, of a small rectangular prism		
right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real world problems.	Constructing units of volume—cubic centimeter, cubic inch, cubic foot, cubic yard (optional), cubic meter		
	Choosing an appropriate unit of volume to measure a large space		

Describing and defending measurement methods
Finding the volume of a large space using cubic meters

Unit Three: Rational Numbers: Addition and Subtraction 1Timeline: 19 SessionsUnit Description: In this unit students focus on deepening and extending students' understanding of fractions and equivalent fractions and
representing fractions using an area model (rectangles), a rotation model (a clock), and a linear model (number lines). They use these
understandings to add and subtract fractions and mixed numbers.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
		Learning Targets	Assessments
5.OA.A.2	Finding fractional parts of	Essential Questions:	Montessori Materials
Write simple expressions that record	a whole or of a group	How can we represent	Fractions cabinet
calculations with numbers, and interpret		fractions of different-sized	
numerical expressions without evaluating	Identifying fraction	rectangles?	Fraction circles box
them. For example, express the calculation	equivalents through		
"add 8 and7, then multiply by 2" as $2 \times (8 + 7)$.	reasoning about	How can we find fractional	Decimal box materials
Recognize that 3 × (18932 + 921) is three times	representations and	units for a whole?	
as large as 18932 +921, without having to	relationships		Investigations Unit 3 –
calculate the indicated sum or product.		How can we show fractional	Rectangles, Clocks, and
	Representing fractions on	parts on a number line?	Tracks
5.NF.A.1	different-sized rectangles		
Add and subtract fractions with unlike		What are common	<u>Assessments</u>
denominators (including mixed numbers) by	Ordering fractions and	denominators?	<u>Formative</u>
replacing given fractions with equivalent	justifying their order		Student Exercises
fractions in such a way as to produce an	through reasoning about	How can we add and subtract	Peer Questioning
equivalent sum or difference of fractions with	fraction equivalents and	fractions with unlike	Classroom
like denominators. For example, 2/3 + 5/4 =	relationships	denominators?	Discussions
8/12 + 15/12 = 23/12. (In general, a/b + c/ d =			Vocabulary checks
(ad + bc)/bd.)	Comparing fractions to	How can we use our fraction	Problem Solving
	the landmarks 0, 1/2, and	knowledge to estimate sums	Challenges
5.NF.A.2	1	and differences of fractions?	Exit Tickets
Solve word problems involving addition and			
subtraction of fractions referring to the same	Finding and comparing	Learning Targets	<u>Summative</u>
whole, including cases of unlike denominators,	fractional parts of a whole	Students will:	Montessori Three-
	or a group		

e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result 2/5 + ½ = 3/7, by observing that 3/7 < 1/2. 5.MD.B.2 Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.	Comparing fractional parts of different-sized wholes Using equivalent fractions to solve problems Comparing fractions on a number line Finding fractional parts of the rotation around a circle Adding fractions by using a rotation model Representing fractions on a number line Finding combinations of fractions with sums between 0 and 2 Adding and subtracting fractions by using a number line Adding and subtracting fractions through reasoning about	 Add fractions with unlike denominators. Subtract fractions with unlike denominators. Represent data including fractions on a line plot and solve addition and subtraction problems about data. 	 Period Lesson including introduction, practice, and assessment of the % of concept mastery. Problem-based interactive Learning activities Performance assessment
---	--	--	--

fraction equivalents and relationships	
Using common denominators to add and subtract fractions	
Adding and subtracting fractions and mixed numbers	
Finding general rules for adding and subtracting fractions	
Making a line plot to display a data set of measurements involving fractions	
Using addition and subtraction of fractions to solve problems involving information given in line plots	
Using benchmark fractions to estimate sums and differences	

 Unit Four: Multiplication and Division 2
 Timeline: 17 Sessions

 Unit Description: In this unit students focus on the operations of multiplication and division. Students refine their strategies for solving multiplication problems fluently, including using the U.S. standard algorithm. Students continue using the relationship between multiplication and division to efficiently solve division problems with 4-digit dividends and 2-digit divisors.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Instructional Materials/
		Learning Targets	Assessments
5.OA.B.3	Solving multiplication	Essential Questions:	Montessori Materials
Generate two numerical patterns using two	problems fluently	How can we find the product of	Division with hierarchical
given rules. Identify apparent relationships		two multi-digit numbers?	materials (Test Tube
between corresponding terms. Form ordered	Describing and comparing		Division)
pairs consisting of corresponding terms from	strategies used to solve	How can we use our known	
the two patterns, and graph the ordered pairs	multidigit multiplication	multiplication strategies to	Place value cards
on a coordinate plane. For example, given the	problems	estimate the product in	
rule "Add 3" and the starting number 0, and		multiplication problems?	Checkerboard materials
given the rule "Add 6" and the starting number	Estimating answers to		
0, generate terms in the resulting sequences,	multiplication problems	How can we deduce what	Investigations Unit 4 – How
and observe that the terms in one sequence		operations(s) are necessary in a	Many People and Teams?
are twice the corresponding terms in the other	Understanding the U.S.	multi-step word problem?	
sequence. Explain informally why this is so.	standard algorithm for		<u>Assessments</u>
	multiplication	How can we use diagrams or	<u>Formative</u>
5.NBT.A.2		pictures to represent division	 Student Exercises
Explain patterns in the number of zeros of the	Multiplying using the U.S.	problems?	 Peer Questioning
product when multiplying a number by powers	standard algorithm for		Classroom
of 10, and explain patterns in the placement of	multiplication		Discussions
the decimal point when a decimal is		Learning Targets	 Vocabulary checks
Multiplied or divided by a power of 10. Use	Using clear and concise	Students will:	 Problem Solving
whole-number exponents to denote powers	notation	 Fluently solve multi- 	Challenges
of 10.		digit multiplication	Exit Tickets
	Solving multi-step word	problems using a	
5.NBT.B.5	problems	variety of strategies	<u>Summative</u>
			Montessori Three-

Fluently multiply multi-digit whole numbers	Using all four operations	including the standard	Period Lesson
using the standard algorithm.	to solve problems	algorithm.	including
			introduction,
5.NBT.B.6	Solving division problems	Solve division problems	practice,
Find whole-number quotients of whole	with a 2-digit divisor	with up to 4-digit	and assessment of
numbers with up to four-digit dividends and	efficiently	dividends and 2-digit	the %
two-digit divisors, using strategies based on place value, the properties of operations,	Representing a division	divisors efficiently.	of concept mastery.Problem-based
and/or the relationship between multiplication	problem with a picture or		interactive Learning
and division. Illustrate and explain the	diagram		activities
calculation by using equations, rectangular			Performance
arrays, and/or area models.	Creating a story context		assessment
	for a division expression		
	Describing and comparing		
	strategies used to solve		
	division problems		

Unit Five: Analyzing Patterns and RulesTimeline: 14 SessionsUnit Description: In this unit students focus on using coordinate graphs, ordered pairs, tables, and symbolic notation to model real world and
mathematical situations. Students analyze arithmetic patterns in tables and the shapes of graphs to describe and compare these situations.
Students work both with situations that follow patterns, allowing predictions of future values (e.g., how the area of a square varies as the
length of a side increases) and situations based on data (e.g., temperature over time).

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/ Learning Targets	Instructional Materials/ Assessments
5.0A.A.2	Understanding the		
Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and7, then multiply by 2" as 2 × (8 + 7). Recognize that 3 × (18932 + 921) is three times as large as 18932 +921, without having to calculate the indicated sum or product. 5.OA.B.3	Understanding the meaning of points on a coordinate graph Plotting points on a coordinate grid Generating ordered pairs and recording them in a table	Essential Questions: What are the x- and y- coordinates of a point on a coordinate grid? What are the points on a coordinate graph? How can we record generated ordered pairs on a table?	Montessori Materials Teacher-made materials to extend commercially available products Investigations Unit 5 – Temperature, Height, and Growth <u>Assessments</u> Formative
Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3" and the starting number 0, and given the rule "Add 6" and the starting number 0, generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.	Identifying points in a graph with corresponding ordered pairs in a table Identifying the x- and y-coordinates of a point on a coordinate grid Comparing situations by describing differences in their graphs	How can we then identify these pairs as points on a graph? How can we think through and articulate a rule that describes a numerical pattern? How can we use tables or graphs or compare two situations of sets of data? <u>Learning Targets</u> Students will:	 Student Exercises Peer Questioning Classroom Discussions Vocabulary checks Problem Solving Challenges Exit Tickets Summative • Montessori Three- Period Lesson including

 5.G.A.1 Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate). 5.G.A.2 Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. 	Articulating a rule that describes a numerical pattern Describing the relationship between two varying quantities related by a rule (e.g., age and height) Using a numerical relationship generated by a given rule to solve problems in that context Writing an equation that describes the relationship between two varying quantities Analyzing and comparing numerical patterns generated by different rules Interpreting values of the points on a coordinate grid in the context of the situation	 Use tables to record ordered pairs and construct coordinate graphs to represent the relationship between x- coordinates and y- coordinates. Determine what values are represented by points on a coordinate grid. Represent real world and mathematical problems by graphing points in the coordinate plane and interpret the graph in the context of the situation. Use tables and graphs to compare two situations governed by rules that generate numerical patterns. 	 introduction, practice, and assessment of the % of concept mastery. Problem-based interactive Learning activities Performance assessment
---	--	---	--

Interpreting a numerical pattern in a table in terms of the situation it represents
Interpreting the shape of a graph in terms of the situation the graph represents
Using symbolic letter notation to represent the value of one varying quantity in terms of another

Unit Six: Rational Numbers: Addition and Subtraction 2 Timeline: 17 Sessions Unit Description: In this unit students focus on deepening and extending students' understanding of decimals and the base-10 number system. Students represent decimals on grids and number lines. They use their understanding of decimals to compare, add, and subtract decimals.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/ Learning Targets	Instructional Materials/ Assessments
5.NBT.A.1	Identifying everyday uses	Essential Questions:	Montessori Materials
Recognize that in a multi-digit number, a digit in one place represents 10 times	of fractions and decimals	How do we use decimals and fractions everyday?	Fraction cabinet
as much as it represents in the place to its right and 1/10 of what it represents in the place to	Representing decimals as parts of an area	How are decimals and fractions	Decimal board materials
its left.	Reading and writing	related?	Million Cube
5.NBT.A.3 Read, write, and compare decimals to thousandths.	tenths, hundredths, and thousandths	How can we show decimals on a number line?	Investigations Unit 6 – Between 0 and 1
5.NBT. A.3a Read and write decimals to thousandths using	Identifying decimal and fraction equivalents	How do we write decimals in expanded form?	Assessments Formative • Student Exercises
base-ten numerals, number names, and Expanded form, e.g., $347.392 = 3 \times 100 + 4 \times 10 + 7 \times 1 + 3 \times (1/10) + 9 \times (1/100) + 2 \times 100 + 20 \times 100 + $	Representing decimals on a number line	How do we add and subtract decimals with fidelity to place value?	 Peer Questioning Classroom Discussions
(1/1000).	Rounding decimals to the nearest one, tenth, or	Learning Targets	Vocabulary checksProblem Solving
5.NBT. A.3b Compare two decimals to thousandths based	hundredth	 Students will: Write, compare, and 	Challenges Exit Tickets
on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.	Writing decimals in expanded form	round decimals to thousandths.	Summative
5.NBT.A.4	Comparing decimals to thousandths	 Add and subtract decimals. 	 Montessori Three- Period Lesson including

Use place value understanding to round decimals to any place. 5.NBT.B.7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.	Ordering decimals and justifying their order through reasoning about decimal representations, equivalents, and relationships Comparing decimals to the landmarks 0, 1/2, and 1 Estimating sums and differences of decimals Using representations to add and subtract tenths, hundredths, and thousandths Adding and subtracting decimals through reasoning about place value, equivalents, and representations	introduction, practice, and assessment of the % of concept mastery. Problem-based interactive Learning activities Performance assessment
	differences of decimal numbers to determine which is greater	

Unit Seven: Rational Numbers: Multiplication and DavisonTimeline: 26 SessionsUnit Description: In this unit students focus on multiplying and dividing rational numbers, which includes extending students' understanding
of the meaning of those operations and of place value. Students use contexts and representations (fraction bars, arrays, and grids) to solve
problems involving multiplication and division of fractions and decimals. Students also apply their understandings of multiplication and
division to solve measurement conversion problems.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/ Learning Targets	Instructional Materials/ Assessments
5.NBT.A.1	Using a representation to	Essential Questions:	Montessori Materials
Recognize that in a multi-digit number, a digit	multiply a fraction and a	How do we multiply a fraction	Peg board
in one place represents 10 times	whole number	by a whole number?	Champa anns a
as much as it represents in the place to its right and 1/10 of what it represents in the place to	Extending understanding		Stamp game
its left.	of the operation of	What can we estimate about	Checkerboard
	multiplication to include	the product of two factors	
5.NBT.A.2	fractions	based on what we know about	Place value cards
Explain patterns in the number of zeros of the		each factor?	
product when multiplying a number by powers	Writing multiplication	How can we represent a	Division with hierarchical
of 10, and explain patterns in the placement of the decimal point when a decimal is	equations for multiplying a fraction and a whole	fractional part of a quantity?	materials (Test tube division)
Multiplied or divided by a power of 10. Use	number	How can we use arrays to	
whole-number exponents to denote powers		represent the multiplication of	Investigations Unit 7 –
of 10.	Writing and interpreting	fractions?	Races, Arrays, and Grids
	multiplication equations		
5.NBT.B.7	involving a fraction and a	What representations can we	Assessments
Add, subtract, multiply, and divide decimals to	whole number	use to solve problems requiring	Formative
hundredths, using concrete models or drawings		the division of a whole number	 Student Exercises
and strategies based on place value, properties	Using a representation	by a fraction or a fraction by a	 Peer Questioning
of operations, and/or the relationship between	and reasoning to multiply	whole number?	Classroom
addition and subtraction; relate the strategy to	a whole number by a		Discussions
	fraction or mixed number		Vocabulary checks

a written method and explain the reasoning		What is the relationship	Problem Solving
used.	Comparing the size of the	between fractions and	Challenges
	product to the size of one	division?	Exit Tickets
5.NF.B.3	factor based on the size of		
Interpret a fraction as division of the	the other factor	How can we find equivalencies	Summative
numerator by the denominator $(a/b = a \div b)$.		between fractions and	Montessori Three-
Solve word problems involving division of	Multiplying a fraction or	decimals?	Period Lesson
whole numbers leading to answers in the form	mixed number and a		including
of fractions or mixed numbers, e.g., by using	whole number	Learning Targets	introduction,
visual fraction models or equations to		Students will:	practice,
represent the problem. For example, interpret	Multiplying a fraction by a		and assessment of
¾ as the result of dividing 3 by 4, noting that	fraction	 Multiply fractions, 	the %
¾ multiplied by 4 equals 3, and that when 3		mixed numbers, and	of concept mastery.
wholes are shared equally among 4 people	Representing a fractional	whole numbers.	Problem-based
each person has a share of size 3/4. If 9 people	part of a fractional		interactive Learning
want to share a 50-pound sack of rice equally	quantity	Compare the size of	activities
by weight, how many pounds of rice should		the factors and the size	Performance
each person get? Between what two whole	Using arrays to represent	of the product and	assessment
numbers does your answer lie?	multiplication of fractions	explain their	
		relationship.	
5.NF.B.4	Understanding the		
Apply and extend previous understandings of	relationship between the	 Divide a unit fraction 	
multiplication to multiply a fraction or whole	denominators and	by a whole number and	
number by a fraction.	numerators of the factors	a whole number by a	
	and the denominator and	unit fraction.	
5.NF.B.4a	numerator of the product		
Interpret the product $(a/b) \times q$ as a parts of a		 Recognize and use 	
partition of q into b equal parts; equivalently,	Using representations to	place value	
as the result of a sequence of operations	solve problems involving	relationships to explain	
$a \times q \div b$. For example, use a visual fraction	dividing a whole number	patterns when	
model to show $(2/3) \times 4 = 8/3$, and create a	by a unit fraction and	multiplying and	

story context for this equation. Do the same	dividing a unit fraction by	dividing by powers of
with (2/3) × (4/5) =8/15. (In general, (a/b) ×	a whole number	10, including
(c/d) = ac/bd.)		placement of the
	Using reasoning, and the	decimal point.
5.NF.B.4b	relationship between	
Find the area of a rectangle with fractional side	division and	Multiply and divide
lengths by tiling it with unit squares of the	multiplication, to solve	decimals to
appropriate unit fraction side lengths, and	division problems	hundredths.
show that the area is the same as would be	involving whole numbers	
found by multiplying the side lengths. Multiply	and unit fractions	
fractional side lengths to find areas of		Solve division problems
rectangles, and represent fraction products as	Solving problems that	with two whole
rectangular areas.	involve dividing a whole	numbers resulting in a
	number by a whole	fraction or a mixed
5.NF.B.5	number resulting in a	number.
Interpret multiplication as scaling (resizing), by:	fraction or a mixed	
	number	Solve measurement
5.NF.B.5a		conversion problems
Comparing the size of a product to the size of	Interpreting fractions as	including multi-step
one factor on the basis of the size of the other	division	word problems.
factor, without performing the indicated		
multiplication.	Identifying decimal and	
	fraction equivalents	
5.NF.B.5b		
Explaining why multiplying a given number by a	Interpreting the meaning	
fraction greater than 1 results in a product	of digits in a decimal	
greater than the given number (recognizing	number	
multiplication by whole numbers greater than 1		
as a familiar case); explaining why multiplying a	Using representations and	
given number by a fraction less than 1 results in	reasoning to multiply	
a product smaller than the given number; and	whole numbers by powers	

		I	
relating the principle of fraction equivalence	of 10 (including 1, 0.1, and		
$a/b = (n \times a)/(n \times b)$	0.01)		
to the effect of multiplying a/b by 1.			
	Explaining the patterns in		
5.NF.B.6	the placement of the		
Solve real world problems involving	decimal point when a		
multiplication of fractions and mixed numbers,	decimal is multiplied by a		
e.g., by using visual fraction models or	power of 10		
equations to represent the problem.			
	Estimating products of		
5.NF.B.7	decimals		
Apply and extend previous understandings of			
division to divide unit fractions by whole	Multiplying decimals to		
numbers and whole numbers by unit fractions.	hundredths through		
(Students able to multiply fractions in general	reasoning about place		
can develop strategies to divide fractions in	value and multiplication		
general, by reasoning about the relationship			
between multiplication and division. But	Writing a strategy for		
division of a fraction by a fraction is not a	multiplying decimals		
requirement at this grade.)	170		
	Using representations and		
5.NF.B.7a	reasoning to divide whole		
Interpret division of a unit fraction by a non-	numbers by powers of 10		
zero whole number, and compute such	(including 1, 0.1, and 0.01)		
quotients. For example, create a story context	(
for $(1/3) \div 4$, and use a visual fraction model to	Explaining the patterns in		
show the quotient. Use the relationship	the placement of the		
between multiplication and division to explain	decimal point when a		
that $(1/3) \div 4 = 1/12$ because $(1/12) \times 4 = 1/3$.	decimal is divided by a		
	power of 10		
5.NF.B.7b			

Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div$ (1/5), and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div$ (1/5) = 20 because 20 × (1/5) = 4.	Estimating quotients of decimals Dividing decimals to hundredths through reasoning about place value and division	
5.NF.B.7c Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share ½ lb. of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins?	Converting U.S. standard and metric measurements Solving multi-step word problems involving measurement	
5.MD.A.1 Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.		

 Unit Eight: 2-D Geometry and Measurement
 Timeline: 10 Sessions

 Unit Description: In this unit students focus on classifying triangles and quadrilaterals based on their properties and on using patterns to describe how the perimeters and areas of rectangles change when the dimensions of the rectangle change. Students examine how categories of polygons are related and how a figure can below to more than one category.

 Standards Alignment
 Unit Concept/Big Ideas
 Essential Questions/
 Instructional Materials/

Stanuarus Angriment	Onit Concept/ big ideas	Essential Questions/	instructional waterials/
		Learning Targets	Assessments
5.OA.B.3	Comparing the perimeters	Essential questions	Montessori Materials
Generate two numerical patterns using two	and areas of rectangles	Can a polygon belong to more	Geometry cabinet
given rules. Identify apparent relationships	when the dimensions are	than one category?	
between corresponding terms. Form ordered	multiplied by given		Box of Sticks
pairs consisting of corresponding terms from	amounts	What happens to the perimeter	
the two patterns, and graph the ordered pairs		and area when dimensions of a	Teacher-made extension
on a coordinate plane. For example, given the	Using numerical and/or	rectangle are multiplied by a	materials
rule "Add 3" and the starting number 0, and	geometric patterns to	given amount?	
given the rule "Add 6" and the starting number	describe how the		Investigations Unit 8 –
0, generate terms in the resulting sequences,	perimeters and areas of	Can rectangles with the same	Properties of Polygons
and observe that the terms in one sequence	rectangles change when	area have different perimeters?	
are twice the corresponding terms in the other	the dimensions change		Assessments:
sequence. Explain informally why this is so.		Learning Targets	<u>Formative</u>
	Using representations to	Students will:	 Student Exercises
5.NF.A.1	explain how perimeters	 Classify polygons by 	 Peer Questioning
Add and subtract fractions with unlike	and areas of rectangles	their attributes and	Classroom
denominators (including mixed numbers) by	change	know that some	Discussions
replacing given fractions with equivalent		quadrilaterals can be	 Vocabulary checks
fractions in such a way as to produce an	Creating different	classified in more than	 Problem Solving
equivalent sum or difference of fractions with	rectangles with the same	one way.	Challenges
like denominators. For example, $2/3 + 5/4 =$	area but different		Exit Tickets
8/12 + 15/12 = 23/12. (In general, a/b + c/ d =	perimeters	 Identify and explain 	
(ad + bc)/bd.)		numerical patterns	<u>Summative</u>
	Creating different	when comparing	Montessori Three-
5.NF.B.4b	rectangles with the same		

	1	_	
Find the area of a rectangle with fractional side	perimeter but different	perimeters and areas	Period Lesson
lengths by tiling it with unit squares of the	areas	of related rectangles.	including
appropriate unit fraction side lengths, and			introduction,
show that the area is the same as would be	Describing the shapes of		practice,
found by multiplying the side lengths. Multiply	rectangles that have the		and assessment of
fractional side lengths to find areas of	same area or the same		the %
rectangles, and represent fraction products as	perimeter		of concept mastery.
rectangular areas.			Problem-based
	Identifying attributes of		interactive Learning
5.NF.B.6	polygons		activities
Solve real world problems involving			Performance
multiplication of fractions and mixed numbers,	Classifying triangles by the		assessment
e.g., by using visual fraction models or	sizes of their angles and		
equations to represent the problem.	the lengths of their sides		
	_		
5.G.B.3	Using attributes to classify		
Understand that attributes belonging to a	quadrilaterals		
category of two-dimensional figures also			
belong to all subcategories of that category. For	Identifying the properties		
example, all rectangles have four right angles	of categories of		
and squares are rectangles, so all squares have	quadrilaterals		
four right angles.			
	Recognizing that a		
5.G.B.4	polygon can belong to		
Classify two-dimensional figures in a hierarchy	more than one category		
based on properties.			

Attachment 4D - Math Maps

Sussex Montessori School Mathematics Curriculum 6th Grade

Attachment 4D - Math Maps

Curriculum Framework for Mathematics

 School: Sussex Montessori School
 Curricular Resources: Montessori Materials and Lessons / Investigations
 3
 Grade: 6

 Unit One: Factors and Multiples
 Timeline: 22 Lessons

 Unit Description: Through this unit, students will understand relationships among factors, multiples, divisors, and products. They will understand why two expressions are equivalent.
 They will

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Assessments
		Learning Targets	
6.NS.B.4	Make sense of problems	Essential Questions:	Montessori Materials:
Find the greatest common factor of two whole	and persevere in solving	How can you find all the factors	Pegboard
numbers less than or equal to 100 and the least	them.	(or divisors) of a number?	
common multiple of two whole numbers less			Teacher-made extension
than or equal to 12. Use the distributive	Reason abstractly and	What information about a	materials
property to express a sum of two whole	quantitatively.	number can you find by looking	
numbers 1–100 with a common factor as a		at its factors?	Connected Mathematics
multiple of a sum of two whole numbers with	Construct viable		Project: Prime Time
no common factor.	arguments and critique	If you know one factor of a	
	the reasoning of others.	number, how can you find	<u>Assessments</u>
6.EE.A.1		another factor of the number?	Formative
Write and evaluate numerical expressions	Model with mathematics.		Student Exercises
involving whole-number exponents.		How do you know when you	 Peer Questioning
	Use appropriate tools	have found all of the factors of	Classroom
6.EE.A.2.B	strategically.	a number?	Discussions
Identify parts of an expression using			 Vocabulary checks
mathematical terms (sum, term, product,	Attend to precision.	How can you find the least	Problem Solving
factor, quotient, coefficient); view one or more		common multiple of two or	Challenges
parts of an expression as a single entity. For	Look for and make use of	more numbers?	• Exit Tickets
example, describe the expression 2 (8 + 7) as a	structure.		
product of two factors; view (8 + 7) as both a		How can you decide when	Summative
single entity and a sum of two terms.	Look for and express	finding common factors is	Montessori Three-
	regularity in repeated	useful in solving a problem?	Period Lesson
6.EE.A.2.C	reasoning.		including

Evaluate expressions at specific values of their		How can you find the greatest	introduction,
variables. Include expressions that arise from	Exponential notation	common factor of two	practice,
formulas used in real-world problems. Perform		numbers?	and assessment of
arithmetic operations, including those involving	Sum, product, factor		the %
whole-number exponents, in the conventional		How can you find the prime	of concept mastery.
order when there are no parentheses to specify	Distributive property	factorization of a number?	 Problem-based
a particular order (Order of Operations). For			interactive Learning
example, use the formulas $V = s^3$ and $A = 6 s^2$ to	Writing numeric and	How many unique prime	activities
find the volume and surface area of a cube with	symbolic expressions and	factorizations of a number are	Performance
sides of length s = 1/2	sentences to represent	there?	assessment
	the operations required to		
6.EE.A.3	solve problems	How can the prime	
Apply the properties of operations to generate		factorization of a number be	
equivalent expressions.	The mathematical	used to find the LCM and GCF	
	meaning of <i>term</i>	of two or more numbers?	
6.EE.A.4	_		
The idea that equivalence means two	Order of operations	What characteristics of	
expressions give the same outputs is first		numbers, such as factors and	
highlighted in Investigation 4 of Prime Time.	Reasoning quantitatively	multiples did you use to answer	
Featuring applications of the distributive	about inequalities	the questions?	
property, the most common principle for			
generating equivalent expressions, Problem 4.3		What special numbers, such as	
of that investigation states the property in		prime numbers, composite	
generality with letter names for variables $a(b + a)$		numbers, and square numbers,	
c) = a(b) + a(c).		did you use?	
		,	
6.EE.B.5		How do you decide whether a	
Understand solving an equation or inequality as		number is even or odd?	
a process of answering a question: which			
values from a specified set, if any, make the			
equation or inequality true? Use substitution to			

determine whether a given number in a	How is the Distributive
specified set makes an equation or inequality	Property used to create
true.	equivalent expressions?
	How is finding the area of a
	rectangle related to the
	Distributive Property?
	How do you decide the order
	when you work on number
	sentences with more than one
	operation?
	How do you decide what
	operations are needed in a
	given situation?
	Learning Targets
	Students will:
	• If a number <i>N</i> can be
	written as a product of
	two whole numbers, N
	$= a \times b$, then a and b
	are factors of N.
	Multiples of a can be
	found using the
	expression $a \times$ (some
	whole number), such
	as 2 <i>a</i> , 3 <i>a</i> , 4 <i>a</i> , etc. Some
	numbers can be

expressed in
exponential notation,
such as a ² , a ³ , a4, etc.
When all factors of a
number are broken
down into prime
numbers, you have a
unique prime
factorization. Finding
-
the prime factorization
of two numbers can be
useful in finding the
least common multiple
and greatest common
factor of the numbers.
 When calculating the
value of an expression,
the operations have to
be performed in a
conventional order, the
order of operations.
Sometimes a numerical
expression can be
written in different
ways but the
expressions are
equivalent because the
value is the same.

equation or inequality true? Use substitution to

determine whether a given number in a

Problem Solving

Challenges

Timeline: 25 Lessons Unit Two: Estimating and Ordering Rational Numbers **Unit Description:** In this unit, students understand fractions and decimals as numbers that can be located on the number line, compared, counted, partitioned, and Decomposed. They understand ratios as comparisons. They understand equivalence of fractions and ratios, and use equivalence to solve problems. **Standards Alignment Unit Concept/Big Ideas Essential Questions**/ Assessments Learning Targets Make sense of problems 6.NS.B.4 **Essential Questions:** Montessori Materials: Find the greatest common factor of two whole How can we order and and persevere in solving numbers less than or equal to 100 and the least them. compare rational numbers on a Fraction cabinet common multiple of two whole numbers less number line? than or equal to 12. Use the distributive Reason abstractly and Fraction box How can we find decimal property to express a sum of two whole quantitatively. numbers 1–100 with a common factor as a equivalents? Decimal checkerboard multiple of a sum of two whole numbers with Construct viable How can we know which values Teacher-made extension no common factor. arguments and critique the reasoning of others. from a specified set, if any. materials make the equation or 6.EE.A.1 Model with mathematics. Write and evaluate numerical expressions inequality true? **Connected Mathematics** involving whole-number exponents. **Project: Comparing Bits** Use appropriate tools and Pieces Learning Targets: Students will: 6.EE.A.3 strategically. Apply the properties of operations to generate Rational numbers can Assessments equivalent expressions. Attend to precision. be written in fraction Formative form or decimal form Student Exercises • 6.EE.B.5 Look for and make use of and can be represented Peer Questioning Understand solving an equation or inequality as structure. as points or distances Classroom • a process of answering a question: which on a number line. The Discussions values from a specified set, if any, make the Look for and express absolute value of a • Vocabulary checks

number is its distance

from 0 on the number

regularity in repeated

reasoning.

specified set makes an equation or inequality		line. A number-line	Exit Tickets
true.	Order of operations	representation is useful	
		for ordering and	<u>Summative</u>
6.EE.B.8	Exponential notation	comparing rational	 Montessori Three-
Write an inequality of the form x > c or x < c to		numbers.	Period Lesson
represent a constraint or condition in a real-	Equivalence		including
world or mathematical problem. Recognize		Benchmarks are useful	introduction,
that inequalities of the form x > c or x < c have	Inequity	for estimating values of	practice,
infinitely many solutions; represent solutions of		fractions and decimals.	and assessment of
such inequalities on number line diagrams.	Ordering and comparing		the %
	rational numbers on a	Ratios are comparisons	of concept mastery.
6.EE.B.9	number line	between two numbers.	 Problem-based
Use variables to represent two quantities in a		You can scale ratios to	interactive Learning
real-world problem that change in relationship	Use substitution to	make equivalent ratios.	activities
to one another; write an equation to express	determine whether a	Percents are ratios	Performance
one quantity, thought of as the dependent	given number in a	where 100 parts	assessment
variable, in terms of the other quantity,	specified set makes an	represent the whole.	
thought of as the independent variable.	equation or inequality		
Analyze the relationship between the	true.	A rate is a particular	
dependent and independent variables and		kind of ratio, where the	
graphs.		amounts compared are	
		in different units. A unit	
6.RP.A.1		rate is a ratio in which	
Understand the concept of a ratio and use ratio		one of the quantities	
language to describe a ratio relationship		being compared has a	
between two quantities.		value of 1.	
6.RP.A.2		Fractions and decimals	
Understand the concept of a unit rate <i>a</i> / <i>b</i>		can be renamed or	
associated with a ratio $a : b$ with $b \neq 0$, and use		repartitioned to find	
		equivalent fractions or	

rate language in the context of a ratio	decimals. Equivalence
relationship.	is useful for moving
	between fraction and
6.RP.A.3	decimal
Use ratio and rate reasoning to solve real-world	representations and for
and mathematical problems, e.g., by reasoning	solving problems.
about tables of equivalent ratios, tape	Equivalent ratios
diagrams, double number line diagrams, or	represent the same
equations.	relationship between
	quantities.
6.NS.C.5	4
Understand that positive and negative numbers	
are used together to describe quantities having	
opposite directions or values (e.g., temperature	
above/below zero, elevation above/below sea	
level, credits/debits, positive/negative electric	
charge); use positive and negative numbers to	
represent quantities in real world contexts,	
explaining the meaning of 0 in each situation.	
6.NS.C.6	
Understand a rational number as a point on the	
number line. Extend number line diagrams and	
-	
coordinate axes familiar from previous grades	
to represent points on the line and in the plane	
with negative number coordinates.	
6.NS.C.7	
Understand ordering and absolute value of	
rational numbers	
rauonarnumbers	

Unit Three: Understanding Fraction Operations Timeline: 20 Lessons

Unit Description: In this unit, students will understand that estimation can be used as a tool in a variety of situations including checking answers and making decisions, and develop strategies for estimating results of arithmetic operations. They will revisit and continue to develop meanings for the four arithmetic operations and skill at using algorithms for each. They will use variables to represent unknown values and equations to represent relationships.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Assessments
		Learning Targets	
6.NS.A.1	Use benchmarks and	Essential Questions:	Montessori Materials:
Interpret and compute quotients of fractions,	other strategies to	What are some strategies for	Pegboard
and solve word problems involving division of	estimate results of	estimating the sums of	
fractions by fractions, e.g., by using visual	operations with fractions.	fractions?	Teacher-made extension
fraction models and equations to represent the			materials
problem.	Use estimates to check	What strategies can you use to	
	the reasonableness of	multiply all combinations of	Connected Mathematics
6.NS.B.3	exact computations	factors including whole	Project: Let's Be Rational
Fluently add, subtract, multiply, and divide		numbers, fractions, and mixed	
multi-digit decimals using the standard	Give various reasons to	numbers?	<u>Assessments</u>
algorithm for each operation.	estimate and identify		<u>Formative</u>
	when a situation calls for	What are some strategies for	Student Exercises
6.NS.B.4	an overestimate or an	adding and subtracting	Peer Questioning
Find the greatest common factor of two whole	underestimate.	fractions?	Classroom
numbers less than or equal to 100 and the least			Discussions
common multiple of two whole numbers less	Use estimates and exact	How do you know if your	Vocabulary checks
than or equal to 12. Use the distributive	solutions to make	estimate is an underestimate	Problem Solving
property to express a sum of two whole	decisions.	or overestimate?	Challenges
numbers 1–100 with a common factor as a			Exit Tickets
multiple of a sum of two whole numbers with	Determine when addition,	What information does an	
no common factor.	subtraction,	underestimate or overestimate	Summative
	multiplication, or division	tell you?	Montessori Three-
6.EE.A.3	is the appropriate		Period Lesson
			including
			including

Apply the properties of operations to generate	operation to solve a	What are some strategies for	introduction,
equivalent expressions.	problem.	adding and subtracting mixed numbers?	practice, and assessment of
6.EE.B.6	Develop ways to model		the %
Use variables to represent numbers and write	sums, differences,	How does an area model relate	of concept mastery.
expressions when solving a real-world or	products, and quotients	to multiplying fractions?	 Problem-based
mathematical problem; understand that a	with areas, fraction strips,		interactive Learning
variable can represent an unknown number, or,	and number lines.	How can you use number	activities
depending on the purpose at hand, any		properties and equivalent	Performance
number in a specified set.	Use knowledge of	fractions to multiply rational	assessment
	fractions and equivalence	numbers?	
6.EE.B.7	of fractions to develop		
Solve real-world and mathematical problems	algorithms for adding,	What does it mean to divide a	
by writing and solving equations of the form x +	subtracting, multiplying,	fraction by a fraction? What	
<i>p</i> = <i>q</i> and <i>px</i> = <i>q</i> for cases in which <i>p</i> , <i>q</i> and <i>x</i>	and dividing fractions.	strategies help you divide a	
are all nonnegative rational numbers.		fraction by a fraction?	
	Write fact families with		
	fractions to show the	What does it mean to divide a	
	inverse relationship	whole number or mixed	
	between addition and	number by a fraction? What	
	subtraction, and between	strategies help you divide a	
	multiplication and	whole number or mixed	
	division.	number by a fraction?	
	Compare and contrast	What does it mean to divide a	
	dividing a whole number	fraction by a whole number?	
	by a fraction to dividing a	What strategies help you divide	
	fraction by a whole number.	a fraction by a whole number?	
	Recognize that when you		

multiply or divide a	What is an efficient algorithm
fraction, your answer	for division problems involving
might be less than or	fractions and mixed numbers?
more than the numbers	
you started with.	How do fact families help you
Solve real-world problems	solve equations such as $4/5 - N$
using arithmetic	= 3/8 ?
operations on fractions	
	How do fact families help you
Represent unknown real-	solve equations such as $2/9 \div N$
world and abstract values	= 2 /3?
with variables.	
	How do you know when a
Write equations (or	particular operation is called
number sentences) to	for to solve a problem?
represent relationships	
among real-world and	How do you represent the
abstract values.	problem with a number
	sentence?
Use fact families to solve	
for unknown values	
	Learning Targets:
	Students will:
	Understand that
	estimation as a tool for
	a variety of situations
	and develop strategies
	for estimating results
	of arithmetic
	operations.

 Understand that estimation as a tool for a variety of situations and develop strategies for estimating results of arithmetic operations.
 Revisit and develop meanings for the four arithmetic operations and skill at using algorithms for each.
 Understand that variables can represent unknown values and equations to represent relationships.
 Use variables to represent unknown values and equations to represent relationships.

Timeline: 23 Lessons

Unit Description: In this unit, students will understand that perimeter is a measure of linear units needed to surround a two-dimensional shape and that area is a measure of square units needed to cover a two-dimensional shape. They will understand that the linear measurements of the base, height, and slanted height of parallelograms and triangles are essential to finding the area and perimeter of these shapes. Additionally, they will understand that the surface area of a three-dimensional shape is the sum of the areas of each two-dimensional surface of the shape and that the volume of a rectangular prism is a measure in cubic units of the capacity of the prism.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Assessments
		Learning Targets	
6.EE.A.2.A	Deepen the understanding	Essential Questions:	Montessori Materials:
Write expressions that record operations with	of area and perimeter of	What are the formulas for	Box of Sticks
numbers and with letters standing for numbers.	rectangular and	finding the area and perimeter	
For example, express the calculation "Subtract y	nonrectangular shapes.	of a rectangle? Explain why	Geometric solids
from 5" as 5 - y.		they work.	
	Relate area to covering a		Geometry cabinet
6.EE.A.2.C	figure.	For a fixed area, what are the	
Evaluate expressions at specific values of their		shape and perimeter of the	Teacher-made extension
variables. Include expressions that arise from	Relate perimeter to	rectangles with the greatest	materials
formulas used in real-world problems. Perform	surrounding a figure.	and least perimeters?	
arithmetic operations, including those involving			Connected Mathematics
whole-number exponents, in the conventional	Analyze what it means to	For a fixed perimeter, what are	Project: Prime Time
order when there are no parentheses to specify	measure area and	the shape and area of the	
a particular order (Order of Operations). For	perimeter.	rectangles the greatest and	<u>Assessments</u>
example, use the formulas $V = s^3$ and $A = 6 s^2$ to		least area?	<u>Formative</u>
find the volume and surface area of a cube with	Develop and use formulas		Student Exercises
sides of length s = 1/2	for calculating area and	What is a formula for finding	Peer Questioning
	perimeter.	the area of a triangle?	Classroom
6.EE.A.3		Does it make any difference	Discussions
Apply the properties of operations to generate	Develop techniques for	which side is used as the base	Vocabulary checks
equivalent expressions.	estimating the area and	when finding the area of a	 Problem Solving
	perimeter of an irregular	triangle?	Challenges
6.EE.A.4	figure.		Exit Tickets

The idea that equivalence means two	Explore relationships	What can you say is true and	Summative
expressions give the same outputs is first	between perimeter and	what can you say is not true	Montessori Three-
highlighted in Investigation 4 of <i>Prime Time</i> .	area, including that one	about triangles that have the	Period Lesson
Featuring applications of the distributive	can vary considerably	same base and height?	including
property, the most common principle for	while the other stays		introduction,
generating equivalent expressions, Problem 4.3	fixed.	What conditions for a triangle	practice,
of that investigation states the property in		produce triangles that have the	and assessment of
generality with letter names for variables $a(b + a)$	Visually represent	same area? Do they have the	the %
c) = a(b) + a(c).	relationships between	same shape? Explain.	of concept mastery.
	perimeter and area on a	What is a strategy for finding	 Problem-based
6.EE.B.6	graph.	the area of a parallelogram?	interactive Learning
Use variables to represent numbers and write		Explain why the strategy works.	activities
expressions when solving a real-world or	Solve problems involving		Performance
mathematical problem; understand that a	area and perimeter of	What can you say about two	assessment
variable can represent an unknown number, or,	rectangles.	parallelograms that have the	
depending on the purpose at hand, any		same base and height?	
number in a specified set.	Analyze how the area of a		
	triangle and the area of a	Under what conditions will two	
6.EE.C.9	parallelogram are related	or more parallelograms have	
Use variables to represent two quantities in a	to each other and to the	the same area? Do these	
real-world problem that change in relationship	area of a rectangle.	parallelograms have the same	
to one another; write an equation to express		shape? Explain.	
one quantity, thought of as the dependent	Recognize that a triangle		
variable, in terms of the other quantity,	can be thought of as half	How can you find the area of a	
thought of as the independent variable.	of a rectangle whose sides	polygon drawn on a coordinate	
Analyze the relationship between the	are equal to the base and	graph? On grid paper?	
dependent and independent variables using	height of the triangle.		
graphs and tables, and relate these to the		What is a strategy for finding	
equation.	Recognize that a	the surface area of a	
	parallelogram can be	rectangular prism? Explain why	
6.G.A.1	decomposed into two	the strategy works.	

Find the area of right triangles, other triangles,	triangles. Thus the area of		
special quadrilaterals, and polygons by	a parallelogram is twice	What is a strategy for finding	
composing into rectangles or decomposing into	the area of a triangle with	the volume of a rectangular	
triangles and other shapes; apply these	the same base and height	prism? Explain why the	
techniques in the context of solving real-world	as the parallelogram.	strategy works.	
and mathematical problems.			
	Know that the choice of	What is a strategy for finding	
6.G.A.2	base of a triangle (or	the surface area of three-	
Find the volume of a right rectangular prism	parallelogram) is arbitrary	dimensional object? Explain	
with fractional edge lengths by packing it	but that the choice of the	why the strategy works.	
with unit cubes of the appropriate unit fraction	base determines the		
edge lengths, and show that the volume is the	height.	Learning Targets:	
same as would be found by multiplying the		Students will:	
edge lengths of the prism. Apply the formulas V	Recognize that there are	 Understand area and 	
= <i>lwh</i> and <i>V</i> = <i>bh</i> to find volumes of right	many triangles (or	perimeter as a	
rectangular prisms with fractional edge lengths	parallelograms) that can	measure.	
in the context of solving real-world and	be drawn with the same		
mathematical problems.	base and height.	Perimeter is a measure	
		of linear units needed	
	Develop formulas and	to surround a two-	
6.G.A.3	strategies, stated in words	dimensional shape and	
Draw polygons in the coordinate plane given	or symbols, for finding the	that area is a measure	
coordinates for the vertices; use coordinates to	area and perimeter of	of square units needed	
find the length of a side joining points with the	triangles and	to cover a two-	
same first coordinate or the same second	parallelograms.	dimensional shape.	
coordinate. Apply these techniques in the			
context of solving real-world and mathematical	Find the side lengths and	A fixed number of area	
problems.	area of polygons on a	units can be enclosed	
	coordinate grid.	by many different	
6.G.A.4		perimeters, and a fixed	
Represent three-dimensional figures using nets		number of perimeter	

made up of rectangles and triangles, and use	Solve problems involving	units can enclose many
the nets to find the surface area of these	area and perimeter of	different areas.
figures. Apply these techniques in the context	parallelograms and	
of solving real-world and mathematical	triangles.	Formulas for the area
problems.		and perimeter of a
	Solve problems involving	rectangle can help you
	area and perimeter of	solve problems by
6.NS.C.8	polygons by composing	reasoning about the
Solve real-world and mathematical problems	into rectangles or	relationship between
by graphing points in all four quadrants of the	decomposing into	values.
coordinate plane. Include use of coordinates	triangles.	
and absolute value to find distances between	_	Understand area and
points with the same first coordinate or the	Extend the understanding	perimeter of
same second coordinate.	of the volume of	parallelograms and
	rectangular prisms.	triangles.
	Relate volume to filling a	Linear measurements
	three-dimensional figure.	of the base, height, and
		slanted height of
	Extend understanding of	parallelograms and
	the strategies for finding	triangles are essential
	the volume of rectangular	to finding the area and
	prisms to accommodate	perimeter of these
	fractional side lengths.	shapes.
	Relate finding area of two-	The area of a triangle
	dimensional shapes to	and the area of a
	finding the surface area of	parallelogram are
	three-dimensional	related to each other
	objects.	and to the area of a
		rectangle.

Develop strategies for	
finding the surface area of	There are many
three-dimensional objects	triangles (and
made from rectangles and	parallelograms) that
triangles.	can be drawn with the
	same base and height.
Make sense of problems	
and persevere in solving	Polygons and irregular
them.	figures can be
	decomposed into
Reason abstractly and	triangles and
quantitatively.	rectangles to find the
	area of the figures.
Construct viable	
arguments and critique	Understand the surface
the reasoning of others.	area and volume of a
	three-dimensional
Model with mathematics.	shape.
	Shape.
Use appropriate tools	• The volume of a prism
strategically.	is a measure in cubic
	units of the capacity of
Attend to precision.	the prism and can be
	thought of as
Look for and make use of	multiplying a base layer
structure.	
	of unit cubes by the
Look for and express	number of layers
regularity in repeated	needed to fill the
reasoning.	prism.
reasoning.	

Surface areas of three- dimensional solids can be found by adding the areas of the faces.

Unit Five: Computing with Decimals and Percents Timeline: 23 Lessons

Unit Description: In this unit, students will understand that estimation can be used as a tool in a variety of situations, including as a way to check answers and make decisions. They will revisit and continue to develop meanings for the four arithmetic operations on rational numbers, and practice using algorithms to operate on decimals. Students will use variables to represent unknown values and number sentences to represent relationships between values and develop understanding of percents through various contexts, such as sales tax, tips, discounts, and percent increases

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Assessments
		Learning Targets	
6.EE.A.2.A	Use estimates to solve	Essential Questions:	Montessori Materials:
Write expressions that record operations with	problems and check	What signals in a real- world	Decimal checkerboard
numbers and with letters standing for numbers.	answers.	problem tell you which	
For example, express the calculation "Subtract y		operation to use?	Fraction cabinet
from 5" as 5 - y.	Recognize when addition,		
	subtraction,	When you work with decimal	Fraction circles box
6.NS.A.1	multiplication, or division	computations, what strategies	
Interpret and compute quotients of fractions,	is the appropriate	can you use to estimate the	Connected Mathematics
and solve word problems involving division of	operation to solve a	results?	Project: Decimal Ops
fractions by fractions, e.g., by using visual	problem.		
fraction models and equations to represent the		How can you express a unit	Assessments
problem.	Use place value to	rate as a decimal and use it to	Formative
	develop understanding of	solve problems?	Student Exercises
6.NS.B.3	algorithms and to relate		 Peer Questioning
Fluently add, subtract, multiply, and divide	operations with decimals	How do you subtract one	Classroom
multi-digit decimals using the standard	to the same operations	decimal number from another?	Discussions
algorithm for each operation.	with fractions.		Vocabulary checks
		Do fact families apply to	 Problem Solving
6.EE.A.2.A	Extend understanding of	operations with decimal	Challenges
Write expressions that record operations with	multiplication and division	numbers?	Exit Tickets
numbers and with letters standing for numbers.	of multidigit whole		
For example, express the calculation "Subtract y	numbers.	How do you find the product of	Summative
from 5" as 5 - y.		any two decimal numbers?	Montessori Three-
	1	1	

	Develop standard		Period Lesson
6.EE.A.3	algorithms for multiplying	What algorithm can be used to	including
Apply the properties of operations to generate	and dividing decimals with	find any decimal product?	introduction,
equivalent expressions.	the aid of, at most, paper	How can a decimal division	practice,
	and pencil	problem be written in	and assessment of
6.EE.B.5		equivalent fraction and whole	the %
Understand solving an equation or inequality as	Find a repeating or	number form?	of concept mastery.
a process of answering a question: which	terminating decimal		 Problem-based
values from a specified set, if any, make the	equivalent to a given	How can you carry out a	interactive Learning
equation or inequality true? Use substitution to	fraction	decimal division using a	activities
determine whether a given number in a		method similar to long division	Performance
specified set makes an equation or inequality	Solve problems using	of whole numbers?	assessment
true.	arithmetic operations on		
	decimals, including finding	How can you complete a long	
6.EE.B.6	unit rates.	division problem that doesn't	
Use variables to represent numbers and write		give a whole number quotient?	
expressions when solving a real-world or	Write number sentences	That is, how do you express	
mathematical problem; understand that a	to represent relationships	remainders in decimal form?	
variable can represent an unknown number, or,	between both real-world		
depending on the purpose at hand, any	and abstract values.	How do you find the tax and	
number in a specified set.		the total cost of an item from a	
	Use fact families to write	given selling price and tax rate?	
6.EE.B.7	and solve equivalent	How do you find the base price	
Solve real-world and mathematical problems	number sentences.	from a given tax rate and	
by writing and solving equations of the form x +		amount?	
p = q and $px = q$ for cases in which p , q and x	Use multiplication	Linus da suas final da stin and da s	
are all nonnegative rational numbers.	sentences to check	How do you find the tip and the	
	division sentences.	total cost of a restaurant meal	
6.RP.A.1	Dovelon models for	from a given meal price and tip	
Understand the concept of a ratio and use ratio	Develop models for	rate? How do you find the meal	
language to describe a ratio relationship	percent problems.		

between two quantities. For example, "The		price from a given tip percent
ratio of wings to beaks in the bird house at the	Write and solve number	and amount?
zoo was 2:1, because for every 2 wings there	sentences involving	
was 1 beak." "For every vote candidate A	percents.	How do you find the discount
received, candidate C received nearly three		and the total cost of an item
votes."	Make sense of problems	from a given selling price and
	and persevere in solving	discount rate? How do you find
6.RP.A.2	them.	the base price from a given
Understand the concept of a unit rate <i>a/b</i>		discount rate and amount?
associated with a ratio $a : b$ with $b \neq 0$, and use	Reason abstractly and	
rate language in the context of a ratio	quantitatively.	How can you express a change
relationship.	· · · · · · · · · · · · · · · · · · ·	in a given amount as a percent
	Construct viable	change?
6.RP.A.3	arguments and critique	
Use ratio and rate reasoning to solve real-world	the reasoning of others.	How do you decide which
and mathematical problems, e.g. by reasoning		operations to perform when a
about tables of equivalent ratios, tape	Model with mathematics.	problem involves decimals and
diagrams, double number line diagrams, or		percents?
equations.	Use appropriate tools	
	strategically.	Learning Targets:
6.RP.A.Cb	strategicany.	Students will:
Solve unit rate problems including those	Attend to precision.	Understand that
involving unit pricing and constant speed. For	Attend to precision.	estimation can be used
example, if it took 7 hours to mow 4 lawns,	Look for and make use of	as a tool in a variety of
then at that rate, how many lawns could be	structure.	situations to solve
mowed in 35 hours? At what rate were lawns		
being mowed?	Look for and express	problems.
	regularity in repeated	
6.RP.A.3C	• • •	Estimation is an
UNFIAIOU	reasoning.	important part of
Find a percent of a quantity as a rate per 100		reasoning
(e.g., 30% of a quantity means 30/100 times		quantitatively. It helps
	1	I

the quantity); solve problems involving finding	you make sense of a
the whole, given a part and the percent.	situation, allows you to
	recognize errors, and
6.NS.B.2	complements other
Fluently divide multi-digit numbers using the	problem solving skills.
standard algorithm.	
	 Use variables to
	represent unknown
	values and number
	sentences to represent
	relationships between
	values.
	Writing number
	sentences to represent
	relationships between
	both real- world and
	abstract values
	contributes to an initial
	understanding of
	algebra.
	Fact families can be
	used to write and solve
	equivalent number
	sentences.
	Use variables to
	represent unknown
	values and number
	sentences to represent

relationships between
values.
Writing number
sentences to represent
relationships between
both real- world and
abstract values
contributes to an initial
understanding of
algebra.
Fact families can be
used to write and solve
equivalent number
sentences.
Develop understanding
of percents through
various contexts.
Using models for
percent helps you to
develop the meaning of
percent and to solve
problems involving
sales tax, tips,
discounts, and percent
increases.
ווונוכמסכס.

Standards Alignment	Unit Concept/Big Ideas	Essential Questions/ Learning Targets	Assessments
6.RP.A.3	Explore problem	Essential Questions:	Montessori Materials:
Use ratio and rate reasoning to solve real-world	situations that involve	How can you construct a graph	Teacher-made extension
and mathematical problems, e.g. by reasoning	variables and	from a table of data that	materials
about tables of equivalent ratios, tape	relationships.	depicts change over time? How	
diagrams, double number line diagrams, or		is the pattern of change	Connected Mathematics
equations.	Identify the dependent and independent variables	represented in the graph?	Project: Variables and Patterns
6.NS.C.8	and describe how they are	What are the advantages and	1 atterns
Solve real-world and mathematical problems	related in a situation.	disadvantages of tables and	Assessments
by graphing points in all four quadrants of the		graphs in representing and	Formative
coordinate plane. Include use of coordinates	Interpret the "stories" told	describing the patterns of	Student Exercises
and absolute value to find distance between	by patterns in tables and	change in a variable over time?	
points with the same first coordinate or the	coordinate graphs of		 Peer Questioning Classroom
same second coordinate.	numeric (<i>x</i> , <i>y</i>) data.	Which representation of data –	e clussi com
6.EE.A.2.A		table, graph, or written notes-	Discussions
Write expressions that record operations with	Represent the pattern of	seems to better show patterns	Vocabulary checks
numbers and with letters standing for numbers.	change that relates two	of change in distance over	Problem Solving
For example, express the calculation "Subtract y	variables in words, data	time, and why?	Challenges
		time, and wry!	Exit Tickets
from 5" as 5 - y.	tables, graphs, and		
	equations.	How do you calculate average	<u>Summative</u>
6.EE.A.2.B	Investigate situations that	speed for a trip? How do a	Montessori Three
Identify parts of an expression using	Investigate situations that	table and graph of (time,	Period Lesson
mathematical terms (sum, term, product,	change over time.	distance) data show speed?	including
factor, quotient, coefficient); view one or more			introduction,
parts of an expression as a single entity. For	Examine increasing and	How do you analyze and	practice,
example, describe the expression 2 (8 + 7) as a	decreasing patterns of	compare the relationship	and assessment of
	change.		the %

product of two factors; view (8 + 7) as both a		between variables given in	of concept mastery.
single entity and a sum of two terms.	Compare linear and	different representations?	 Problem-based
	nonlinear patterns of		interactive Learning
6.EE.A.2.C	change by using tables or	How are the relationships	activities
Evaluate expressions at specific values of their	graphs.	between independent and	Performance
variables. Include expressions that arise from		dependent variables in this	assessment
formulas used in real-world problems. Perform	Use tables, graphs, and	Problem different from those in	
arithmetic operations, including those involving	equations to find the	Problem 2.1? How are the	
whole-number exponents, in the conventional	value of a variable given	differences shown in tables and	
order when there are no parentheses to specify	the value of the	graphs of data?	
a particular order (Order of Operations). For	associated variable.		
example, use the formulas $V = s^3$ and $A = 6 s^2$ to		How are the variables, tour	
find the volume and surface area of a cube with	Explore relationships that	<i>income</i> and <i>tour profit,</i> related	
sides of length s = 1/2	require graphing in all four quadrants.	to each other?	
6.EE.A.3		How do you plot data points	
Apply the properties of operations to generate	Describe advantages and	with one or both coordinates	
equivalent expressions.	disadvantages of using	negative?	
	words, tables, graphs, and		
6.EE.B.7	equations to represent	When the relationship between	
Solve real-world and mathematical problems	patterns of change	dependent and independent	
by writing and solving equations of the form $x + p = q$, and $px = q$ for cases in which p and q and	relating two variables and make connections across	variables is displayed in a	
p = q, and $px = q$ for cases in which p and q and x are all nonnegative rational numbers.	those representations	graph, what can you learn about the relationship from a	
x are all nonnegative rational numbers.	those representations	rising graph, a level graph, and	
6.EE.C.9	Write an equation to	a falling graph?	
Use variables to represent two quantities in a	express the relationship		
real-world problem	between two variables in	In what kinds of situations will	
that change in relationship to one another;	one and two operations:	the equation between	
write an equation to express one quantity,	y=mx, $y=b+x$, and $y=b+mx$	dependent and independent	
thought of as the dependent variable, in terms			
thought of as the dependent variable, in terms			

of the other quantity, thought of as the	Calculate average speed	variables be in the form	
independent variable. Analyze the relationship	and show how it is	y=x+k? y=x-k?y=kx? y=x/k?	
between the dependent and independent	reflected in a table or		
variables using graphs and tables, and relate	graph and vice versa.	What can you tell about the	
these to the equation.		relationship between	
	Recognize and express	dependent and independent	
6.RP.A.2	direct proportionality	variables in an equation of the	
Understand the concept of a unit rate <i>a</i> / <i>b</i>	relationships with a unit	form y = mx? How is that	
associated with a ratio $a : b$ with $b \neq 0$, and use	rate (y=mx) and represent	relationship shown in a table	
rate language in the context of a ratio	these relationships in rate	and a graph of sample (x, y)	
relationship.	tables and graphs.	values? Why is the point (1, m)	
		on every graph?	
6.RP.A.3	Solve problems that		
Use ratio and rate reasoning to solve real-world	involve variables.	How do you calculate values of	
and mathematical problems, e.g., by reasoning		y from an equation like y = 3x +	
about tables of equivalent ratios, tape	Develop understanding of	5 when values of x are given?	
diagrams, double number line diagrams, or	expressions and	How about y = 5 + 3x? When do	
equations.	equations.	you need such equations that	
		involve two operations?	
6.RP.A.3A	Use properties of		
Make tables of equivalent ratios relating	operations, including the	When an equation relating two	
quantities with whole-number measurements,	Distributive Property and	variables involves two or more	
find missing values in the tables, and plot the	the Order of Operations,	operations, how do you use the	
pairs of values on the coordinate plane. Use	to write equivalent	equation to find values of the	
tables to compare ratios.	expressions for the	dependent variable from given	
	dependent variable in	values of the independent	
6.RP.A.3B	terms of the independent	variable?	
Solve unit rate problems including those	variable.		
involving unit pricing and constant speed. For		Is it possible to have two	
example, if it took 7 hours to mow 4 lawns,	Use tables, graphs, or	different, but equivalent,	
then at that rate, how many lawns could be	properties of numbers		

mowed in 35 hours? At what rate were lawns	such as the Distributive	expressions for a given	
being mowed?	Property to show that two expressions are	situation? Explain.	
6.RP.A.3d	equivalent.	What does it mean to say that	
Use ratio reasoning to convert measurement		two algebraic expressions are	
units; manipulate and transform units	Identify parts of an	equivalent?	
appropriately when multiplying or dividing	expression using		
quantities.	mathematical terms (sum,	How can expressions such as 3x	
	term, product, factor,	+ 7x or	
6.NS.C.6	quotient, coefficient);	3(x+2) be written in equivalent	
Understand a rational number as a point on the	view one or more parts of	form?	
number line. Extend number line diagrams and	an expression as a single	What strategies can you use to	
coordinate axes familiar from previous grades	entity.	solve equations in the forms x +	
to represent points on the line and in the plane		a = b, x - a = b, ax = b, and	
with negative number coordinates.	Interpret and evaluate	x ÷ a = b (a ≠ 0)?	
	expressions in which		
6.NS.C.B	letters stand for numbers	How can you represent and	
Write, interpret, and explain statements of	and apply the Order of	find solutions for inequalities?	
order for rational numbers in real-world	Operations as needed.	· · - ·	
contexts. For example, write $-3^{\circ}C > -7^{\circ}C$ to		Learning Targets:	
express the fact that -3°C is warmer than -7°C.	Recognize that equations	Students will:	
6.NS.C.6C	are statements of	Develop understanding	
Understand the absolute value of a rational	equivalence between two	of variables and how	
number as its distance from 0 on the number	expressions.	they are related.	
line; interpret absolute value as magnitude for	Solve linear equations of	Develop understanding	
a positive or negative quantity in a real-world	the forms <i>y=ax, y=b+x,</i>	of expressions and	
situation. For example, for an account balance	and y=b+ax using numeric	equations	
of -30 dollars, write -30 = 30 to describe the	guess and check, tables of		
size of the debt in dollars.	(<i>x</i> , <i>y</i>) values, and graphs or fact families.		

 6.EE.A.1, Write and evaluate numerical expressions involving whole-number exponents. 6.EE.A.2 Write, read, and evaluate expressions in which letters stand for numbers. 6.EE.A.4 Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions y + y + y and 3y are equivalent because they name the 	Write an inequality and associate it with an equation to find solutions and graph the solutions on a number line.	 Understand and use the process of statistical investigation. The process of statistical investigation involves posing questions, collecting and analyzing data, and interpreting answers. Understand the role of multiple representations of data
same number regardless of which number y stands for.		distributions.
 6.EE.B.5 Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true. 6.EE.B.6 Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, 		 Finding measures of center or variability and graphing data are useful for summarizing the information in a variable data set. Visual representations of a data set can help you interpret the measures of center and spread and relate this to the overall shape of the representation.

depending on the purpose at hand, any	 Distinguish data and
number in a specified set.	data types.
6.EE.B.8	The answers to a
Write an inequality of the form $x > c$ or $x < c$ to	statistical question are
represent a constraint or condition in a real-	called data. Data can
world or mathematical problem. Recognize that	be either numerical or
inequalities of the form $x > c$ or $x < c$ have	categorical.
infinitely many solutions; represent solutions of	
such inequalities on number line diagrams.	 Understand that a
	single number may be
	used to characterize
	the center of a
	distribution of data and
	the degree of
	variability (or spread).
	variability (of spicad).
	There are several ways
	to try to say what is
	typical of a set of data;
	in each case a single
	number, called a
	measure of center,
	summarizes the data.
	Because various
	measures of center are
	calculated differently,
	they respond
	differently to changes
	in the data or to
	unusual data values.
	ullusual uata values.

 The variability of a set of data can be measured, interpreted, and compared with the variability of other data sets. Measures of variability tell you how spread out the data are in relation to each other or to the center.

Unit Seven: Statistics and Data Analysis Tir	meline: 23 Lessons		
Unit Description: In this unit, students understa	nd and use the process of st	atistical investigation, distinguish da	ata and data types, and display
data with multiple representations.			
Standards Alignment	Unit Concept/Big Ideas	Essential Questions/	Assessments
		Learning Targets	
6.NS.B.4	Understand and use the	Essential Questions:	Montessori Materials:
Find the greatest common factor of two whole	process of statistical	What are "data"? How do you	Pegboard
numbers less than or equal to 100 and the least	investigation.	represent data using a	
common multiple of two whole numbers less		frequency table or a line plot?	Teacher-made extension
than or equal to 12. Use the distributive	Ask questions, collect	How can you compare two	materials
property to express a sum of two whole	and analyze data, and	distributions of data?	
numbers 1–100 with a common factor as a	interpret data to		Connected Mathematics
multiple of a sum of two whole numbers with	answer questions.	What are the measures of	Project: Data About Us
no common factor.		central tendency and variability	
	Describe data with	(or spread)? How do you	<u>Assessments</u>
6.EE.A.1	respect to its shape,	compare and use mode and	<u>Formative</u>
Write and evaluate numerical expressions	center, and variability	range?	Student Exercises
involving whole-number exponents.	or spread.		Peer Questioning
		How do you identify and use	Classroom
6.EE.A.2.A	Construct and use	the median? How can you	Discussions
Write expressions that record operations with	simple surveys as a	compare two distributions of	 Vocabulary checks
numbers and with letters standing for numbers.	method of collecting	data using the medians?	Problem Solving
For example, express the calculation "Subtract y	data.		Challenges
from 5" as 5 - y.		How do you go about finding a	Exit Tickets
	Distinguish data and	number that is a good estimate	
6.EE.A.2.B	data types.	of typical household size based	<u>Summative</u>
Identify parts of an expression using		on the given data?	Montessori Three-
mathematical terms (sum, term, product,	Recognize that data		Period Lesson
factor, quotient, coefficient); view one or more	consist of counts or	How do you interpret,	including
parts of an expression as a single entity. For	measurements of a	compute, and use the mean?	introduction,
example, describe the expression 2 (8 + 7) as a	variable, or an		practice,

product of two factors; view (8 + 7) as both a	attribute; these	How do the median and the	and assessment of
single entity and a sum of two terms.	observations comprise	mean respond to the data in a	the %
<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	a distribution of data	distribution? How do you	of concept mastery.
6.EE.A.2.C	values.	choose which measure of	Problem-based
Evaluate expressions at specific values of their		center to use when describing	interactive Learning
variables. Include expressions that arise from	Distinguish between	what is typical?	activities
formulas used in real-world problems. Perform	categorical data and		Performance
arithmetic operations, including those involving	numerical data, and	How do you distinguish	assessment
whole-number exponents, in the conventional	identify which graphs	different types of data? What	
order when there are no parentheses to specify	and statistics can be	statistics are used with	
a particular order (Order of Operations). For	used to represent each	different types of data?	
example, use the formulas $V = s^3$ and $A = 6 s^2$ to	kind of data.		
find the volume and surface area of a cube with		What information does the	
sides of length s = 1/2	Display data with	interquartile range provide	
	multiple	about how data vary in a	
6.EE.A.3	representations.	distribution?	
Apply the properties of operations to generate			
equivalent expressions.	Organize and represent	How is the interquartile range	
	data using tables, dot	used to make comparisons	
6.EE.A.4	plots, line plots,	among distributions?	
The idea that equivalence means two	ordered-value bar		
expressions give the same outputs is first	graphs, frequency bar	What information does the	
highlighted in Investigation 4 of <i>Prime Time</i> .	graphs, histograms, and	mean absolute deviation	
Featuring applications of the distributive	box-and-whisker plots.	provide about how data vary in	
property, the most common principle for		a distribution?	
generating equivalent expressions, Problem 4.3	Make informed		
of that investigation states the property in	decisions about which	How can you use a histogram	
generality with letter names for variables $a(b + b) = a(b) + b(b) + b(b)$	graphs or tables can be	to help you interpret data?	
c) = a(b) + a(c).	used to display a		
	particular set of data.	How can you interpret data	
		using a box-and-whisker plot?	

Decognize that a gray h	
Recognize that a graph	How can you compare and
shows the overall shape	How can you compare and
of a distribution,	contrast data represented by
whether the data	dot plots, histograms, and box
values are symmetrical	plots?
around a central value,	
and whether the graph	Learning Targets:
contains any unusual	Students will:
characteristics such as	Understand
gaps, clusters, or	relationships among
outliers	factors, multiples,
	divisors, and products.
Recognize that a single	
number may be used to	• If a number <i>N</i> can be
characterize the center	written as a product of
of a distribution of data	two whole numbers, N
and the degree of	$= a \times b$, then a and b
variability (or spread).	are factors of N.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Multiples of a can be
Distinguish between	found using the
and compute measures	expression $a \times (some$
of central tendency	whole number), such
(mean, median, and	as 2 <i>a</i> , 3 <i>a</i> , 4 <i>a</i> , etc. Some
mode) and measures of	numbers can be
spread (range,	expressed in
interquartile range	
	exponential notation,
(IQR), and mean	such as a2, a3, a4, etc.
absolute deviation	
(MAD)).	When all factors of a
	number are broken
	down into prime

Identify how the	numbers, you have a
median and mean	unique prime
respond to changes in	factorization. Finding
the data values of a	the prime factorization
distribution.	of two numbers can be
	useful in finding the
Relate the choice of	least common multiple
measures of central	and greatest common
tendency and variability	factor of the numbers
to the shape of the	and in classifying
distribution and the	numbers as prime,
context.	composite, even, odd,
	or square.
Describe the amount of	·
variability in a	Understand why two
distribution by noting	expressions are
whether the data	equivalent.
values cluster in one or	
more areas or are fairly	When calculating the
spread out.	value of an expression,
spicaa out.	the operations have to
Use measures of center	be performed in a
and spread to compare	•
data distributions.	conventional order, the
uata distributions.	order of operations.
	Sometimes a numerical
	expression can be
	written in different
	ways but the
	expressions are
	equivalent because the

value is the same.
Properties of
operations, including
the Distributive
Property, are essential
tools for writing
equivalent expressions.