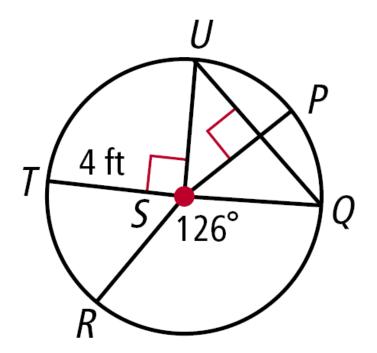

Area of a sector and segment of a circle

Warm Up

1. Find w, y, and z. Give the answers in simplest radical form.


$$w = 20\sqrt{3}$$
$$y = \frac{40\sqrt{3}}{3}$$
$$z = \frac{20\sqrt{3}}{3}$$

Warm Up Continued

Find each measure.

3. $UQ = 4\sqrt{2}$ ft

Objectives

Find the area of sectors.

Find arc lengths.

Vocabulary

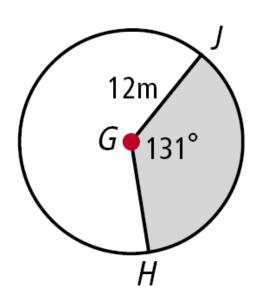
sector of a circle segment of a circle arc length The area of a sector is a fraction of the circle containing the sector. To find the area of a sector whose central angle measures m° , multiply the area of the circle by $\frac{m^{\circ}}{360^{\circ}}$.

Sector of a Circle

TERM	NAME	DIAGRAM	AREA
A sector of a circle is a region bounded by two radii of the circle and their intercepted arc.	sector ACB	C P M°	$A = \pi r^2 \left(\frac{m^\circ}{360^\circ}\right)$

Helpful Hint

Write the degree symbol after *m* in the formula to help you remember to use degree measure not arc length.


Example 1A: Finding the Area of a Sector

Find the area of each sector. Give answers in terms of π and rounded to the nearest hundredth.

sector *HGJ*

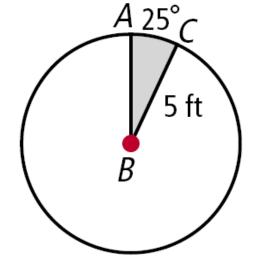
$$A = \pi r^2 \left(\frac{m^{\circ}}{360^{\circ}} \right)$$
 Use formula for area of sector.

$$=\pi (12)^2 \left(\frac{131^{\circ}}{360^{\circ}}\right)$$
 Substitute 12 for r and 131 for m.

=
$$52.4\pi \text{ m}^2 \approx 164.62 \text{ m}^2$$
 Simplify.

Example 1B: Finding the Area of a Sector

Find the area of each sector. Give answers in terms of π and rounded to the nearest hundredth.


sector ABC

$$A = \pi r^2 \left(\frac{m^{\circ}}{360^{\circ}} \right)$$

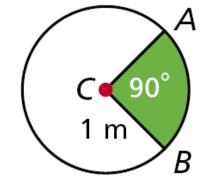
 $= \pi (5)^2 \left(\frac{25^{\circ}}{360^{\circ}} \right)$

Use formula for area of sector.

Substitute 5 for r and 25 for m.

$$\approx 1.74\pi \text{ ft}^2 \approx 5.45 \text{ ft}^2$$
 Simplify.

Check It Out! Example 1a


Find the area of each sector. Give your answer in terms of π and rounded to the nearest hundredth.

sector ACB

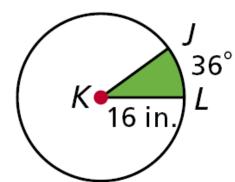
$$A = \pi r^2 \left(\frac{m^{\circ}}{360^{\circ}} \right)$$
 Use formula for area of sector.

$$\pi (1)^2 \left(\frac{90^\circ}{360^\circ} \right)$$

 $= \pi (1)^2 \left(\frac{90^{\circ}}{360^{\circ}}\right) \qquad \begin{array}{l} \text{Substitute 1 for r} \\ \text{and 90 for m.} \end{array}$

 $= 0.25\pi \text{ m}^2 \approx 0.79 \text{ m}^2 \text{ Simplify.}$

Check It Out! Example 1b


Find the area of each sector. Give your answer in terms of π and rounded to the nearest hundredth.

sector JKL

$$A = \pi r^2 \left(\frac{m^{\circ}}{360^{\circ}} \right)$$
 Use formula for area of sector.

$$=\pi (16)^2 \left(\frac{36^{\circ}}{360^{\circ}}\right)$$
 Substitute 16 for r and 36 for m.

=
$$25.6\pi \text{ in}^2 \approx 80.42 \text{ in}^2$$
 Simplify.

Example 2: Automobile Application

A windshield wiper blade is 18 inches long. To the nearest square inch, what is the area covered by the blade as it rotates through an angle of 122°?

$$A = \pi r^2 \left(\frac{m^\circ}{360^\circ}\right)$$
 Use formula for area of sector.
 $= \pi \left(18\right)^2 \left(\frac{122^\circ}{360^\circ}\right)$ $r = 18$ in.
 $\approx 345 \text{ in}^2$ Simplify.

Check It Out! Example 2

To the nearest square foot, what is the area watered in Example 2 (p. 765) as the sprinkler rotates through a semicircle?

$$A = \pi r^2 \left(\frac{m^\circ}{360^\circ}\right)$$

$$= \pi \left(360\right)^2 \left(\frac{180^\circ}{360^\circ}\right)$$

$$= 720 \text{ ft, } r = 360 \text{ ft}$$

$$\approx 203,575 \text{ ft}^2$$
Simplify.

A **segment of a circle** is a region bounded by an arc and its chord.

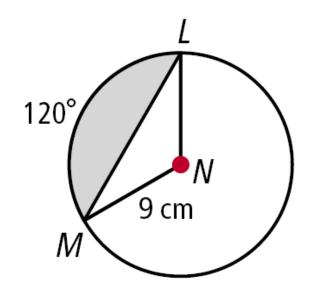
Area of a Segment

area of segment = area of sector - area of triangle

Example 3: Finding the Area of a Segment

Find the area of segment *LNM* to the nearest hundredth.

Step 1 Find the area of sector *LNM*.


$$A = \pi r^2 \left(\frac{m^{\circ}}{360^{\circ}} \right)$$

$$= \pi (9)^2 \left(\frac{120^\circ}{360^\circ}\right) \qquad \begin{array}{l} \text{Substitute 9 for and 120 for m.} \end{array}$$

$$= 27\pi \text{ cm}^2$$

Use formula for area of sector.

Substitute 9 for r

Example 3 Continued

Find the area of segment *LNM* to the nearest hundredth.

Step 2 Find the area of ΔLNM . Draw altitude \overline{NO} .

$$L \xrightarrow{30^{\circ}} \overset{N}{b}$$

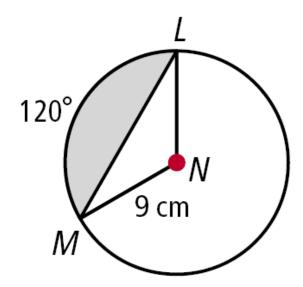
$$A = \frac{1}{2}bh = \frac{1}{2}(9\sqrt{3})(4.5)$$
 $LM = 9\sqrt{3}$ cm, and $h = 4.5$ cm

$$= 20.25\sqrt{3} \text{ cm}^2$$
 Simplify.

Remember!

In a 30°-60°-90° triangle, the length of the leg opposite the 60° angle is $\sqrt{3}$ times the length of the shorter leg.

Example 3 Continued


Find the area of segment *LNM* to the nearest hundredth.

Step 3

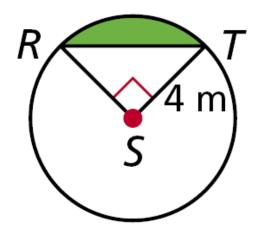
area of segment = area of sector LNM – area of ΔLNM

$$=27\pi-20.25\sqrt{3}$$

$$\approx 49.75$$
 cm²

Check It Out! Example 3

Find the area of segment RST to the nearest hundredth.

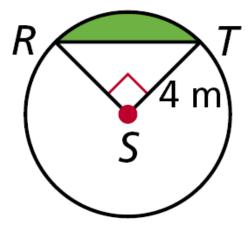

Step 1 Find the area of sector *RST*.

$$A = \pi r^2 \left(\frac{m^{\circ}}{360^{\circ}} \right)$$

$$= 4\pi \text{ m}^2$$

Use formula for area of sector.

 $= \pi (4)^2 \left(\frac{90^{\circ}}{360^{\circ}}\right) \qquad \begin{array}{l} \text{Substitute 4 for r} \\ \text{and 90 for m.} \end{array}$


Check It Out! Example 3 Continued

Find the area of segment *RST* to the nearest hundredth.

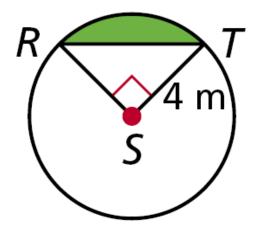
Step 2 Find the area of $\triangle RST$.

$$A = \frac{1}{2}bh = \frac{1}{2}(4 \text{ m})(4 \text{ m})$$
 $ST = 4 \text{ m}, \text{ and } RS = 4 \text{m}.$

 $= 8 \text{ m}^2$

Check It Out! Example 3 Continued

Find the area of segment *RST* to the nearest hundredth.

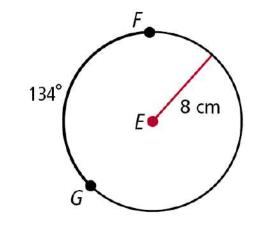

Step 3

area of segment = area of sector RST – area of ΔRST

$$=27\pi-20.25\sqrt{3}$$

$$= 4\pi - 8$$

$$\approx 4.57 \text{ m}^2$$



In the same way that the area of a sector is a fraction of the area of the circle, the length of an arc is a fraction of the circumference of the circle.

Arc Length			
TERM	DIAGRAM	LENGTH	
Arc length is the distance along an arc measured in linear units.	A m B	$L = 2\pi r \left(\frac{m^{\circ}}{360^{\circ}}\right)$	

Example 4A: Finding Arc Length

Find each arc length. Give answers in terms of π and rounded to the nearest hundredth.

$$\widehat{\textit{FG}}$$

$$L = 2\pi r \left(\frac{m^{\circ}}{360^{\circ}} \right)$$

$$=2\pi(8)\left(\frac{134^{\circ}}{360^{\circ}}\right)$$

≈ 5.96π cm ≈ 18.71 cm

Use formula for area of sector.

Substitute 8 for r and 134 for m.

Example 4B: Finding Arc Length

Find each arc length. Give answers in terms of π and rounded to the nearest hundredth.

an arc with measure 62° in a circle with radius 2 m

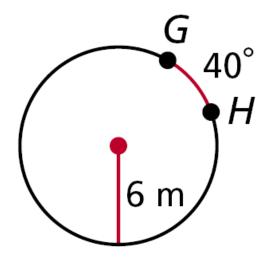
$$L = 2\pi r \left(\frac{m^{\circ}}{360^{\circ}}\right)$$

$$=2\pi(2)\left(\frac{62^{\circ}}{360^{\circ}}\right)$$

Use formula for area of sector.

Substitute 2 for r and 62 for m.

 $\approx 0.69\pi$ m ≈ 2.16 m Simplify.


Check It Out! Example 4a

Find each arc length. Give your answer in terms of π and rounded to the nearest hundredth.

$$L = 2\pi r \left(\frac{m^{\circ}}{360^{\circ}}\right)$$
$$= 2\pi (6) \left(\frac{40^{\circ}}{360^{\circ}}\right)$$
$$= \frac{4}{3}\pi \text{ m} \approx 4.19 \text{ m}$$

Use formula for area of sector.

Substitute 6 for r and 40 for m.

Check It Out! Example 4b

Find each arc length. Give your answer in terms of π and rounded to the nearest hundredth.

an arc with measure 135° in a circle with radius 4 cm

$$L = 2\pi r \left(\frac{m^{\circ}}{360^{\circ}} \right)$$

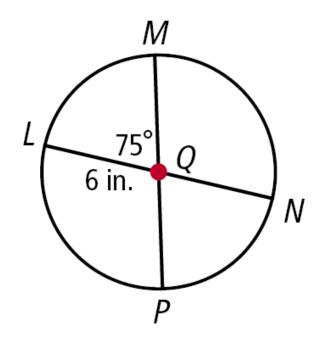
$$=2\pi (4)\left(\frac{135^{\circ}}{360^{\circ}}\right)$$

 $= 3\pi$ cm ≈ 9.42 cm

Use formula for area of sector.

Substitute 4 for r and 135 for m.

Lesson Quiz: Part I


Find each measure. Give answers in terms of π and rounded to the nearest hundredth.

1. area of sector *LQM*

 $7.5\pi \text{ in}^2 \approx 23.56 \text{ in}^2$

2. length of \widehat{NP}

 $2.5 \pi \text{ in.} \approx 7.85 \text{ in.}$

Lesson Quiz: Part II

3. The gear of a grandfather clock has a radius of 3 in. To the nearest tenth of an inch, what distance does the gear cover when it rotates through an angle of 88°?

≈ 4.6 in.

4. Find the area of segment *GHJ* to the nearest hundredth.

 $\approx 55.94 \text{ m}^2$