

Curriculum Framework for

School: First State Military Academy

Course: <u>Algebra 2</u>

Course Description: Algebra II continues the study of quadratic functions and introduces students to polynomial functions, logarithmic functions and trigonometric functions. Advanced features of the graphing calculator are incorporated into the course work. Real world problem solving and applications of algebra in various fields such as engineering and the sciences are a focal point of instruction. Content is aligned to the Delaware Core Standards and the new SAT.

Big Idea: To provide all cadets the knowledge, skills, and attributes, to thrive in post-secondary education, work, and civic life.				
Standards Alignment	Unit Concepts/Big Ideas	Driving Questions/Learning Targets	Assessments	
Unit One: Expressions, Linear Equations, and Absolute Value Timeline: 4 weeks				
CCSS.Math.Content.ASSE.1a - Interpret parts of an expression, such as terms, factors, and coefficients. CCSS.Math.Content.ASSE.1b - Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1+r)n as the product of P and a factor not depending on P.	Concepts: Variables Algebraic Expressions Order of Operations Formula Real Numbers Rational Numbers Irrational Numbers Integers Whole Numbers Natural Numbers Open Sentence Equation	 Driving Questions: How are symbols useful in mathematics? What mathematical symbols do you know? Learning Targets: Use the order of operations to evaluate expressions Use formulas Classify real numbers Use the properties of real numbers to evaluate 	Summative: - Party Project or Trip Project - Wall Activity for Absolute Value - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups	

CCSS. Math.Content.ASSE.2 - Use the structure of an expression to identify ways to rewrite it. For example, see x^4 - y^4 as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$. CCSS.Math.Content.A-CED.1 - Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and exponential functions.	Solution Absolute Value Empty Set Extraneous Solution Big Ideas: - Use the real properties of real numbers to evaluate expressions and formulas - Classify real numbers - Use the properties of equality to solve equations - Solve absolute value equations	 expressions Translate verbal expressions into algebraic expressions and equations, and vice versa Solve equations using the Properties of Equality Evaluate expressions involving absolute values Solve absolute value equations 			
Unit Two: Compound and A Timeline: 4 weeks	Unit Two: Compound and Absolute Value Inequalities Timeline: 4 weeks				
CCSS.Math.Content.A-CED.1 - Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and exponential functions. CCSS.Math.Content.A-CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.	Concepts: Compound Inequality Intersection Infinity Big Ideas: - Solve inequalities, compound inequalities, and absolute value inequalities - Graph inequalities, compound inequalities, and absolute value inequalities	 Driving Questions: How are symbols useful in mathematics? What mathematical symbols do you know? Learning Targets: To solve one-step inequalities To solve multi-step inequalities To solve compound inequalities To solve absolute value inequalities 	Summative: - Size Project or Prom Project - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups		

Unit Three: Linear Relations Timeline: 5 weeks	s and Functions		
CCSS.Math.Content.F-IF.4 - For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs	Concepts: One-to-one Functions Onto Function Discrete Relation Continuous Relation Vertical Line Test	 Driving Questions: How can mathematical ideas be represented? Learning Targets: Analyze relations and 	Summative: - Winter Decoration Project - Quiz Formative: - Workshop Practice
showing key features given a verbal description of the relationship.	Independent Variable Dependent Variable Function Notation Linear Relations	 functions Use equations of relations and functions Use discrete and continuous functions to solve real-world 	 Classwork/Homework Assignments Warm-Ups
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble	Linear Function Standard Form Y-intercept X-intercept Rate of Change Slope	 Identify linear relations and functions Write linear equations in standard form Find rate of change 	
n engines in a factory, then the positive integers would be an appropriate domain for the function	Slope-intercept Form Point-slope Form Parallel Perpendicular Scatter Plot Positive Correlation	 Determine the slope of a line Write an equation of a line given the slope and a point on the line Write an equation of a line parallel or perpendicular to a 	
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one	Negative Correlation Line of Fit Prediction Equation Regression Line Correlation Coefficient	 given line Use scatter plots and prediction equations Model data using lines of regression 	
quadratic function and an algebraic expression for another, say which has the larger Maximum	Big Ideas: - Identify the mathematical domains and ranges of functions and determine reasonable domain and range		

 CCSS.Math.Content.F-IF.6 - Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. CCSS.Math.Content.ASSE.1b - Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1+r)n as the product of P and a factor not depending on P. CCSS.Math.Content.A-CED.2 - Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. 	 values for continuous and discrete situations Identify and sketch graphs of linear functions Collect and organize data, make and interpret scatter plots, fit the graph of a function to the data, interpret the results and proceed to model, predict and make decisions and critical judgements 		
Unit Four: Quadratics and C Timeline: 9 weeks	Complex Numbers		
CCSS.Math.Content.ASSE.1a - Interpret parts of an expression, such as terms, factors, and coefficients. CCSS.Math.Content.F-IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For	Concepts: Quadratic function Quadratic Linear Constant Terms Parabola Axis of Symmetry Vertex Maximum Value Minimum Value Quadratic Equations	 Driving Questions: Why do we use different methods to solve math problems? Learning Targets: Solve quadratic equations by using the Quadratic Formula Use the discriminant to determine the number and type of roots of a quadratic 	Summative: - Throwing a ball Project - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups

example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger Maximum CCSS.Math.Content.A-CED.2 - Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CCSS.Math.Content.F-IF.4 - For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.	 Standard Form Root Zero Factored Form Foil Imaginary unit Pure imaginary unit Complex Number Complex Conjugates Big Ideas: Determine reasonable domain and range values of quadratic functions Analyze situations involving quadratic functions and formulate quadratic equations and inequalities to solve problems Solve quadratic equations and inequalities using graphs, tables, and algebraic methods, including the Quadratic Formula Use complex numbers to describe the solutions of quadratic equations Determine a quadratic function from its zeros Identify and sketch graphs of parent functions, including quadratic functions 	equation - Use a graphing calculator to investigate changes to parabolas - Write a quadratic function in the form $y = a(x - h)^2 + k$ - Transform graphs of quadratic functions of the form $y = a(x - h)^2 + k$ - Investigate the rate of change of a quadratic function by examining first- and second-order differences	
Timeline: 6 weeks	Analyzing Grapha		

 CCSS.Math.Content.A-CED.1 - Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and exponential functions CCSS.Math.Content.A-APR.4 - Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity (x2 + y2)2 = (x2 - y2)2 + (2xy)2 can be used to generate Pythagorean triples CCSS.Math.Content.A-APR.2 - Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x). CCSS.Math.Content.F-IF.7 - Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.★ c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. 	 Concepts: Prime Polynomials Quadratic Form Identity Polynomial Identity Synthetic Substitution Depressed Polynomial Big Ideas: Use tools including factoring and properties of exponents to simplify expressions and to transform and solve equations Identify the mathematical domains and ranges of functions Determine the reasonable domain and range values for continuous situations 	 Driving Questions: Why is math used to model real-world situations? Learning Targets: Factor Polynomials Solve polynomial equations by factoring Prove polynomial identities Evaluate functions by using synthetic substitution Determine whether a binomial is a factor of a polynomial by using synthetic substitution Determine the number and type of roots for a polynomial equation Find the zeros of a polynomial functions Identify possible rational zeros of a polynomial function Hentify possible rational zeros of a polynomial function Find all of the rational zeros of a polynomial function 	Summative: - Roller Coaster Project - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups
Identify zeros of polynomials			

when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.			
CCSS.Math.Content.N-CN.9 - (+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.			
CCSS.Math.Content.A-REI.11 - Explain why the x-coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. \bigstar			
Unit Six: Inverses and Radio Timeline: 4 weeks	cal Functions and Relations		_
CCSS.Math.Content.F-IF.9 - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For	Concepts: Composition of Functions Inverse Relation Inverse Function Square Root Function Radical Function	 Driving Questions: How can you choose a model to represent a set of data? Learning Targets: Find the sum, difference, product, and questiont of 	Summative: - Driving in Style Project - Quiz Formative: - Workshop Practice

quadratic function and an algebraic expression for another, say which has the larger maximumNth root Radical Index Radical Index Radical IndexCCSS.Math.Content.F-BF.1 - Write a function that describes a relationship between two quantities.★Rational Like rad Conjuga Radical Extranee Radical Extra	 sign sign sign sign Find the functions Find the or relations Determine functions Compare inverses Graph a functions Use a care approxim Use a graph stables, and oraic methods Time the reasonable ain and range values of re root functions, and oret and determine the parent function to stigate, describe, and ct the effects of meter changes on graphs uare root functions and ribe limitations on the ains and ranges 	composition of inverse of a function whether two or relations are a functions and its using a graphing or ad analyze square root quare root inequalities radicals lculator to nate radicals aphing calculator to h root functions radical expressions otract, multiply, and dical expressions pressions with rational ts in radical form quations containing equalities containing aphing calculator to dical equations and ies	Assignments - Warm-Ups
---	---	--	---------------------------

a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)$ =2 x3 or $f(x) = (x+1)/(x-1)$ for x 1.		
CCSS.Math.Content.F-IF.7 - Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.★		
b. Graph square root, cube root, and piecewisedefined functions, including step functions and absolute value functions.		
CCSS.Math.Content.F-BF.3 - Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, k $f(x)$, f(kx), and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.		
CCSS.Math.Content.A-SSE.2. - Use the structure of an expression to identify ways to rewrite it. For example, see $x4 - y4$ as $(x2)2 - (y2)2$, thus recognizing it as a difference of		

squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$.			
CCSS.Math.Content.A-REI.2. - Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.			
CCSS.Math.Content.A-REI.11 - Explain why the x-coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. \bigstar			
Unit Seven: Exponential and Timeline: 5 weeks	d Logarithmic Functions and	Relations	
CCSS.Math.Content.F-IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.★ e. Graph exponential and	Concepts: Exponential Function Exponential Growth Asymptote Growth Factor Exponential Decay Decay Factor Exponential Equation Compound Interest	 Driving Questions: How can you make good decisions? What factors can affect good decision making? Learning Targets: Graph exponential growth functions 	Summative: - Population Puzzle Project - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups

 logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. CCSS.Math.Content.F-IF.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify 	Exponential Inequality Logarithm Logarithmic Function Logarithmic Equation Logarithmic Inequality Common Logarithm Change of Base Formula Natural Base, <i>e</i> Natural Base, <i>e</i> Natural Base Exponential Function Natural Logarithm Rate of Continuous Growth Rate of Continuous Decay Logistic Growth Model	 Graph exponential decay functions Use a graphing calculator to solve exponential equations by graphing or by using the table feature Solve exponential equations Solve exponential inequalities Evaluate logarithmic expressions Graph logarithmic functions Use a graphing calculator to find an equation of best fit for exponential and logarithmic functions Solve logarithmic equations 	
percent rate of change in functions such as $y = (1.02)t$, $y = (0.97)t$, $y = (1.01)12t$, $y = (1.2)t/10$, and classify them as representing exponential growth or decay. CCSS.Math.Content.A-REI.11. - Explain why the x-coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. \bigstar	 Big Ideas: Analyze a situation modeled by an exponential function, formulate an equation or inequality, and solve the problem Develop the definition of logarithms by exploring and describing the relationships between exponential functions and their inverses Use parent functions to investigate, describe and predict the effects of parameter changes on the graphs of exponential and logarithmic functions, describe limitations on the domains and ranges, and examine asymptotic behavior Determine solutions of exponential and logarithmic 	 Solve logarithmic equations Solve logarithmic inequalities Simplify and evaluate expressions using the properties of logarithms Solve logarithmic equations using the properties of logarithms Solve exponential equations and inequalities using common logarithms Evaluate logarithmic expressions using the Change of Base Formula Use a graphing calculator to solve exponential and logarithmic equations and inequalities Evaluate expressions involving the natural base and natural logarithm Solve exponential equations and inequalities using natural 	

CCSS.Math.Content.A-CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and exponential functions. CCSS.Math.Content.F-LE4 For exponential models, express as a logarithm the solution to abct =d where a, c, and d are numbers and the base b is 2,10,or e; evaluate the logarithm using technology.	equations using graphs, tables, and algebraic methods - Interpret and determine the reasonableness of solutions to exponential and logarithmic equations and inequalities	 logarithms Use a spreadsheet to display the growth of an investment over time Use logarithms to solve problems involving exponential growth and decay Use logarithms to solve problems involving logistic growth 	
CCSS.Math.Content.F-IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.★			
e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.			
CCSS.Math.Content.F-BF.3. - Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $k f(x)$, f(kx), and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an			

explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. CCSS.Math.Content.A-SSE.2			
Use the structure of an expression to identify ways to rewrite it. For example, see $x4 - y4$ as $(x2)2 - (y2)2$, thus recognizing it as a difference of squares that can be factored as $(x2 - y2)(x2 + y2)$.			
CCSS.Math.Content.A-CED.1. - Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and exponential functions.			
Unit Eight: Rational Functio Timeline: 4 weeks	ons and Relations		
CCSS.Math.Content.A-APR.7. - (+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.	Concepts: Rational expression Complex fraction Reciprocal function Hyperbola Asymptote Rational function Point discontinuity Direct variation Constant of variation	 Driving Questions: Why are graphs useful? Learning Targets: Simplify rational expressions Simplify complex fractions Determine the LCM of polynomials Add and subtract rational expressions 	Summative: - Financial Literacy Project - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups

CCSS.Math.Content.A-CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CCSS.Math.Content.F-BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. CCSS.Math.Content.F-IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic exp	 Rational equations Rational inequalities Weighted average Big Ideas: Determine properties of reciprocal functions and graph their transformations Use quotients of polynomials to describe the graphs of rational functions, describe limitations on the domains and ranges, and examine asymptotic behavior Determine the reasonable domain and range values of rational functions and determine the reasonableness of solutions to rational equations and inequalities Analyze a situation modeled by a rational function, formulate an equation composed of a linear or quadratic function, and solve the problem Use functions to model and make predictions in problem situations involving direct and inverse variation 	 Determine properties of reciprocal functions Graph transformations of reciprocal functions Graph rational functions with vertical and horizontal asymptotes Graph rational functions with oblique asymptotes and point discontinuity Use a graphing calculator to explore the graphs of rational functions Recognize and solve direct and joint variation problems Recognize and solve inverse and combined variation problems Solve rational equations Solve rational equations by graphing or by using the table feature 	
Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise			

CCSS.Math.Content.A-CED.1. - Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and exponential functions. CCSS.Math.Content.A-REI.11. - Explain why the x-coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. \bigstar			
Unit Nine: Timeline:			
CCSS.Math.Content.	Concepts:	Driving Questions:	Summative:
	Big Ideas: -	- Learning Targets: -	- - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments

Algebra 2 Maria Collier

maria.collier@fsmilitary.k12.de.us mcollier@fsmilitary.org

Expectations:

- 1. Use proper salutations.
- 2. Wear your uniform properly
- 3. Come prepared with a notebook, writing utensil, your computer, and homework if necessary.
- 4. Contribute during class discussion.
- 5. Stay on task while working in partners or groups.

Materials Needed Everyday:

Spiral Notebook Writing Utensil Computer

Topics to be covered:

- Unit 1: Equations and Inequalities
- Unit 2: Linear Relations and Functions
- Unit 3: Systems of Equations and Inequalities
- Unit 4: Quadratic Functions and Relations
- Unit 5: Polynomials
- Unit 6: Inverses and Radical Functions
- Unit 7: Exponential and Logarithmic Functions
- Unit 8: Rational Functions
- Unit 9: Conic Sections

Assignment Headings

When you turn in work electronically, I need you to put a heading on your assignments so that it is easier to keep track of the assignments along with the members of your group.

Last name: Assignment Title Collier: Order of Operations HW

Group Work Last name: Group members: Assignment Title Collier: Cook, Garton, Irwin: Order of Operation Project

Make-up Work:

Every student has the ability to check his or her assignments from home as long as Wi-Fi is available. Make-up work will be taken care of on an individual basis, but students that aren't in school will be expected to contact their groups to make sure that they are contributing as much as possible to help the group run smoothly to finish the projects. Absent students need to check the Agenda to see if there are any daily assignments that need to be accomplished before they come back to school. Assignments will only be accepted up to 5 school days late unless a plan has been created with the teacher.

Late Work

A student has the ability to turn in work up until 5 days after the due date for the assignment. This is for when a student needs to finish an assignment that might not be quite done at the time it is supposed to be turned in. The student will lose points off of his or her grade each day that the assignment is late. The assignment will not be accepted on the 6th day for a grade. The assignment will automatically turn to a 0.

Grading System:

The assignments will be graded on a scale so that Content and Knowledge are worth 50%, Written Communication is 15%, Oral Communication is 15%, Agency is 10%, and Collaboration is 10%.

100 – 93	А
92 – 85	В
84 – 77	С
76 – 70	D
69 – below	F

We are looking forward to an exciting year where everyone is learning and growing together.

Sincerely,

Mrs. Collier

Curriculum Framework for:

School: First State Military Academy

Course: Algebra I

Course Description:

This course applies critical thinking skills needed to solve real world problems. It covers patterns and sequences, all types of linear equations and inequalities in one variable, systems of equations, quadratic functions, and an introduction to exponential functions. Coordinate geometry will be integrated into the investigation of these functions. Students learn how to use a graphing calculator in order to stay current with modern technological trends. Content is aligned to the Delaware Core Standards and the new SAT.

Big Idea: To provide all cadets the knowledge, skills, and attributes, to thrive in post-secondary education, work, and civic life.			
Standards Alignment	Unit Concepts/Big Ideas	Driving Questions/Learning Targets	Assessments
Unit One: Expressions, Equations, and Functions Timeline: 14 Days			
 CCSS.A.SSE.1a - Interpret parts of an expression, such as terms, factors, and coefficients. CCSS.A.SSE.2 - Use the structure of an expression to identify ways to rewrite it. CCSS.A.SSE.1b - Interpret complicated expressions by viewing one or more of their parts as a single entity. CCSS.A.CED.1 - Create equations and inequalities in one variable and 	Concepts: Algebraic Expressions Variable Term Power Exponent Base Evaluate Order of Operations Equivalent Expressions Reciprocal Like Terms Simplest Form Distributive Property Coefficient	 Driving Questions: How can mathematical ideas be represented? Learning Targets: To write verbal expressions for algebraic expressions To write algebraic expressions for verbal expressions To evaluate numerical expressions by using the order of operations To evaluate algebraic expressions by using the order of operations To use the distributive property to evaluate and simplify expressions 	Summative: - Car Project - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups

 CCSS.A.REI.3 - Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. CCSS.A.REI.10 - Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). CCSS.F.IF.1 - Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. CCSS.F.IF.2 - Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. 	 Solving Solution Coordinate Plane X- and y-axes Origin Ordered Pair X- and y-coordinates Relation Domain Range Independent Variable Dependent Variable Punction Vertical Line Test Function Notation Big Ideas: Represent relationships among quantities using tables, graphs, verbal descriptions, and inequalities Use symbols to represent unknowns and variables Find specific function values and solve equations in problem situations Describe independent and dependent quantities in functional relationships Identify mathematical domains and ranges and determine reasonable domain and range values for given situations Connect equation notation with function notation 	two variables - To represent and interpret graphs of relations - To determine whether a relation is a function - To identify function values	
Timeline: 20 Days			
CCSS.A.CED.1 - Create equations and inequalities in one variable and use them to solve problems.	Concepts: Formula Solve an Equation Equivalent Equations	 Driving Questions: Why is it helpful to represent the same mathematical idea in different ways? 	Summative: - Central Park Desmos - Pepsi Points Problem - Bottomless Coffee

CCSS.A.REI.1 - Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method CCSS.A.REI.3 - Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.	 Multi-Step Equations Addition Property of Equality Subtraction Property of Equality Multiplication Property of Equality Division Property of Equality Consecutive Integers Big Ideas: Describe functional relationships for given problem situations and write equations to answer questions arising from the situations Represent relationships among quantities using diagrams, verbal descriptions, and equations Find specific function values, and transform and solve equations in problem situations Use the Properties to simplify expressions 	 Learning Targets: To translate sentences into equations To translate equations into sentences To solve equations by using addition, subtraction, multiplication, and division To solve equations involving more than one operation To solve equations involving consecutive integers To solve equations with the variable on each side To solve equations involving grouping symbols 	 Quiz Formative: Penny Balance Problem Basketball Overboard Problem Workshop Practice Classwork/Homework Assignments Warm-Ups
Unit Three: Linear Functions Timeline: 12 days			
CCSS.F.IF.4 - For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. <i>Key</i> <i>features include: intercepts; intervals</i> <i>where the function is increasing,</i> <i>decreasing, positive, or negative;</i> <i>relative maximums and minimums;</i> <i>symmetries; end behavior; and</i> <i>periodicity.*</i> CCSS.F.IF.7a - Graph linear and quadratic functions and show intercepts, maxima, and minima.	Concepts: Linear Equation Standard Form Constant X-intercept Y-intercept Linear function Rate of change Slope Direct variation Big Ideas: - Create, use, translate, and make connections among algebraic, tabular, graphical, or verbal descriptions of linear functions. - Interpret the meaning of intercepts in situations using data, symbolic	 Driving Questions: Why are graphs useful? Learning Targets: To identify linear equations, intercepts, and zeros. To graph and write linear equations. To use rate of change to solve problems. 	Summative: - Roller Coaster Project - Quiz Formative: - Function Research - Leo the Rabbit - Foundations of Functions Worksheet - Workshop Practice - Classwork/Homework Assignments - Warm-Ups

 CCSS.A.REI.10 - Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). CCSS.F.IF.6 - Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* CCSS.F.LE.1a - Distinguish between situations that can be modeled with linear functions and with exponential functions. Unit Four: Equations of Linear 	 representations, or graphs Determine the intercepts of the graphs of linear functions and zeros of linear functions from graphs, tables, and algebraic representations Look for patterns and represent generalizations algebraically Develop the concept of slope as rate of change and determine the slope from graphs, tables, and algebraic representations Interpret the meaning of slope in situations using data, symbolic representation 		
Timeline: 16 Days			
 CCSS.F.IF.7a - Graph linear and quadratic functions and show intercepts, maxima, and minima. CCSS.S.ID.7 - Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. CCSS.F.BF.1 - Write a function that describes a relationship between two quantities CCSS.F.LE.2 - Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table). CCSS.F.IF.2 - Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. 	Concepts: Slope-intercept form Constraint Linear extrapolation Point-slope form Parallel lines Perpendicular lines Inverse relation Inverse function Big Ideas: - Write equations of lines given specific characteristics - Interpret and predict the effects of changing the slope and y-intercept in applied situations - Interpret and make decisions, predictions, and critical judgments from functional relationships - Solve an equation of the form f(x)	 Driving Questions: Why is math used to model real-world situations? Learning Targets: To write and graph linear equations in various forms. To find inverse linear functions. 	Summative: - Lost in Space Project - Quiz Formative: - Investigating T-shirt offers - Workshop Practice - Classwork/Homework Assignments - Warm-Ups

CCSS.A.CED.2 - Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CCSS.F.BF.4a - Solve an equation of the form $f(x) = c$ for a simple function f that has an inverse and write an expression for the inverse.	= c for a simple function <i>f</i> that has an inverse and write an expression for the inverse.		
Unit Five: Linear Inequalities Timeline: 12 Days			
CCSS.A.CED.1 - Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. CCSS.A.REI.3 - Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. CCSS.A.REI.12 - Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.	Concepts: Set-Builder Notation Compound Inequality Intersection Union Boundary Half-Plane Closed Half-Plane Open Big Ideas: - Formulate linear inequalities to solve problems - Investigate methods for solving linear inequalities using the Properties of Inequality - Solve linear inequalities - Interpret and determine the reasonableness of solutions to linear inequalities	 Driving Questions: How are symbols useful in mathematics? What mathematical symbols do you know? Learning Targets: To solve one-step and multi-step inequalities To solve compound inequalities and inequalities involving absolute value. To graph inequalities in two variables. 	Summative: - Equations and inequalities project - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups
Unit Six: Systems of Linear Equations and Inequalities Timeline: 12 Days			
CCSS.A.CED.2 - Create equations in two or more variables to represent relationships between quantities;	Concepts: Systems of equations Consistent	Driving Questions:How can you find the solution to a math problem?	Summative: - Netflix, Redbox, or Apple TV - Star Wars vs. Avengers

graph equations on coordinate axes with labels and scales. CCSS.A.REI.6 - Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables. CCSS.A.REI.5 - Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions Unit Seven: Exponents and Ex	Independent Dependent Inconsistent Substitution Elimination Big Ideas: - Analyze situations and formulate systems of linear equations in two unknowns to solve problems. - Solve systems of linear equations using graphs and algebraic methods - Interpret and determine the reasonableness of solutions to systems of linear equations.	 How can you use system of equations to solve real-world problems? Learning Targets: To solve systems of linear equations by graphing, substitution, and elimination. 	 Quiz Formative: Workshop Practice Classwork/Homework Assignments Warm-Ups
Timeline: 14 Days	•	[[
CCSS.A.SSE.2 - Use the structure of an expression to identify ways to rewrite it. For example, see $x4 - y4$ as (x2)2 - (y2)2, thus recognizing it as a difference of squares that can be factored as $(x2 - y2)(x2 + y2)$. CCSS.F.IF.8b - Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. CCSS.N.RN.1 - Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 51/3 to be the cube root of 5 because we want $(51/3)3 = 5(1/3)3$ to hold, so (51/3)3 must equal 5. CCSS.N.RN.2 - Rewrite expressions involving radicals and rational	Concepts: Monomial Constant Zero Exponents Negative Exponent Order of Magnitude Rational Exponent Cube Root <i>n</i> th Root Exponential Equation Scientific Notation Exponential Function Exponential Function Exponential Decay Function Compound Interest Geometric Sequence Common Ratio Recursive Formula Big Ideas: - Simplify polynomial expressions and apply the laws of exponents in problem-solving situations	 Driving Questions: How can you make good decisions? What factors can affect good decision making? Learning Targets: To simplify and perform operations on expressions involving exponents. To extend the properties of integer exponents to rational exponents. To use scientific notation. To graph and use exponential functions 	Summative: - Exponential Functions Project: Math with a Message. - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups

CCSS.F.IF.7e - Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. CCSS.F.LE.2 - Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table). CCSS.REI.11 - Explain why the <i>x</i> -coordinates of the points where the graphs of the equations $y = f(x)$ and y = $g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.* CCSS.F.BF.2 - Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.* CCSS.F.IF.3 - Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0) = f(1) = 1$, $f(n+1) =$ $f(n) + f(n-1)$ for $n \ge 1$.	 situations involving exponential growth and decay using tables, graphs, or algebraic methods Relate geometric sequences to exponential functions, and write recursive formulas to represent sequences 	
Timeline: 18 Days		

CCSS.A.SSE.1a - Interpret parts ofConcepts:Driving Questions:Summative:

an expression, such as terms, factors, and coefficients. CCSS.A.APR.1 - Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials. CCSS.A.SSE.2 - Use the structure of an expression to identify ways to rewrite it. <i>For example, see</i> $x4 - y4$ as (x2)2 - (y2)2, thus recognizing it as a difference of squares that can be factored as $(x2 - y2)(x2 + y2)$. CCSS.A.SSE.3a - Factor a quadratic expression to reveal the zeros of the function it defines. CCSS.A.REI.4b - Solve quadratic equations by inspection (e.g., for $x2 =$ 49), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm bi$ for real numbers <i>a</i> and <i>b</i> . CCSS.A.REI.1 - Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.	Factoring Factoring by grouping Zero Product Property Quadratic Equation Prime Polynomial Difference of Two Squares Perfect Square Trinomial Big Ideas: - Add, subtract, and multiply polynomials - Factor as necessary in problem situations - Solve quadratic equations using concrete models, tables, graphs, and algebraic methods	 When could a nonlinear function be used to model a real-world situation? Learning Targets: To add, subtract, and multiply polynomials To factor trinomials To factor differences of squares To graph quadratic functions To solve quadratic equations 	 "How To" Quadratics Project Quiz Formative: Workshop Practice Classwork/Homework Assignments Warm-Ups 	
Unit Nine: Quadratic Functions and Equations Timeline: 18 Days				
CCSS.F.IF.4 - For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing	Concepts: Quadratic Function Standard form Parabola Axis of Symmetry	 Driving Questions: Why do we use different methods to solve math problems? Learning Targets: 	Summative: - Quadratic functions project - Parabola Selfie - Quiz	

 key features given a verbal description of the relationship. CCSS.F.IF.7a - Graph linear and quadratic functions and show intercepts, maxima, and minima. CCSS.A.REI.4b - Solve quadratic equations by inspection (e.g., for x² = 49), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. CCSS.A.SSE.3b - Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. CCSS.A.REI.4 - Solve quadratic equations in one variable. CCSS.F.IF.8a - Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. CCSS.F.IF.6 - Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. CCSS.F.LE.1 -Distinguish between situations that can be modeled with linear functions and with exponential functions. 	Vertex Minimum Maximum Double root Transformation Translation Dilation Reflection Vertex Form Completing the square Quadratic Formula Big Ideas: - To identify and sketch the general forms of quadratic parent functions - Analyze graphs of quadratic functions and draw conclusions - Make connections among the solutions of quadratic equations, the zeros of their related functions, and the horizontal intercepts of the graph of the function - Solve quadratic equations using concrete models, tables, graphs, and algebraic methods - Analyze functions with successive differences and ratios - Identify and graph special functions	 To solve quadratic equations by graphing, completing the square, and using the Quadratic Formula To analyze functions with successive differences and ratios To identify and graph special functions 	Formative: • Workshop Practice • Classwork/Homework Assignments • Warm-Ups
Unit Ten: Radical Functions and Geometry Timeline: 16 Days			
CCSS.F.BF.4a - Solve an equation of the form $f(x) = c$ for a simple function f that has an inverse and write an expression for the inverse. CCSS.F.IF.4 - For a function that	Concepts: Square Root Function Radical Function Redicand Radical Expression	 Driving Questions: How can you choose a model to represent a real-world situation? Learning Targets 	Summative: - Radical Functions - Modeling the Speed of Tsunamis - Quiz

models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. CCSS.F.IF.7b - Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases CCSS.A.REI.4a - Use the method of completing the square to transform any quadratic equation in <i>x</i> into an equation of the form $(x - p)2 = q$ that has the same solutions. Derive the quadratic formula from this form. CCSS.N.NR.2 - Rewrite expressions involving radicals and rational exponents using the properties of exponents. CCSS.A.CED.2 - Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. Unit Eleven: Rational Function Timeline: 14 Days	Rationalizing the denominator Conjugate Closed nth Root Index Radical Equations Extraneous Solutions Hypotenuse Legs Converse Pythagorean Triple Distance Formula Midpoint Trigonometry Trigonometry Trigonometric Ratio Sine Cosine Tangent Solving the Triangle Inverse sine Inverse sine Inverse Cosine Inverse Tangent Big Ideas: - Add, subtract, multiply, and simplify radical expressions - Solve radical equations - Use Pythagorean Theorem and and trigonometric ratios to solve problems.	 To graph and transform radical functions. To simplify, add, subtract, and multiply, radical expressions. To solve radical equations. To use the Pythagorean Theorem. To find trigonometric ratios. 	Formative: - Vorkshop Practice - Classwork/Homework Assignments - Warm-Ups
CCSS.A.CED.2 - Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CCSS.A.REI.11 - Explain why the <i>x</i> -coordinates of the points where the graphs of the equations $y = f(x)$ and y	Concepts: Inverse Variation Product Rule Rational Function Excluded Value Asymptote Rational Expression Least Common Multiple	 Driving Questions: How can simplifying mathematical expressions be useful? Learning Targets To identify and graph inverse variations To identify extended values of rational functions 	 Summative: Rational Functions Project - Crime Scene Investigation Quiz Formative: Workshop Practice Classwork/Homework Assignments

= $g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.*	Least Common Denominator Mixed Expression Complex Fraction Rational Equation Extraneous Solution Work and Rate Problems Big Ideas: - Analyze data and represent situation involving inverse variation using tables, graphs, or algebraic methods - Graph and analyze rational functions - Identify excluded values from rational expressions and simplify rational expressions - Multiply and divide rational expressions and use dimensional analysis - Divide a polynomial by a monomial or binomial - Add and subtract rational expressions with like and unlike denominators - Solve rational equations and eliminate extraneous roots	 To multiply, divide, and add rational expressions To divide polynomials To solve rational equations 	- Warm-Ups	
Unit Twelve: Statistics and Probability Timeline: 14 Days				
CCSS.S.ID.2 - Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. CCSS.S.ID.3 - Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).	Concepts: Population Sample Simple random sample Systematic sample Self-selected sample Convenience sample Stratified sample Bias Survey Observational study Experiment	 Driving Questions: How are statistics and probability used in the real world? Learning Targets To design surveys and evaluate results To use permutations and combinations To design and use simulations 	Summative: - Independent Study - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups	

CCSS.S.ID.5 - Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.	Statistical inference Statistic Parameter Mean absolute deviation (MAD) Standard deviation Variance Distribution Negatively skewed distribution Symmetric distribution Positively skewed distribution Linear transformation Theoretical probability Experimental probability Relative frequency Simulation Probability model Permutation Factorial Combination Compound event Joint probability Independent events Dependent events Dependent events Mutually exclusive events Random variable Discrete random variable Probability graph Expected value Big Ideas: - Identify various sampling techniques and recognize a biased sample - Count outcomes using the Fundamental Counting Principle - Use combinations and permutations to determine probabilities - Find the probability of two independent events, and find the probability of two mutually	
	probability of two mutually exclusive or inclusive events	

 Use random variables to compute probability, and use probability distributions to solve real-world problems Use probability simulations to model real-world situations 	
---	--

Algebra 1 Cassandra Garton

cassandra.garton@fsmilitary.k12.de.us cgarton@fsmilitary.org

Expectations:

- 1. Use proper salutations.
- 2. Wear your uniform properly
- 3. Come prepared with a notebook, writing utensil, your computer, and homework if necessary.
- 4. Contribute during class discussion.
- 5. Stay on task while working in partners or groups.

Materials Needed Everyday:

Spiral Notebook Writing Utensil Computer

Topics to be covered:

Unit 1: Functions, Equations, and Expressions

- Unit 2: Linear Equations
- Unit 3: Linear Functions
- Unit 4: Equations of Linear Functions
- Unit 5: Linear Inequalities
- Unit 6: Systems of Linear Equations and Inequalities
- Unit 7: Exponents and Exponential Functions
- Unit 8: Quadratic Expressions and Equations
- Unit 9: Quadratic Functions and Equations

Make-up Work:

Every student has the ability to check his or her assignments from home as long as Wi-Fi is available. Make-up work will be taken care of on an individual basis, but students that aren't in school will be expected to contact their groups to make sure that they are contributing as much as possible to help the group run smoothly to finish the projects. Absent students need to check the Agenda to see if there are any daily assignments that need to be accomplished before they come back to school. Assignments will only be accepted up to 5 school days late unless a plan has been created with the teacher.

Late Work

A student has the ability to turn in work up until 5 days after the due date for the assignment. This is for when a student needs to finish an assignment that might not be quite done at the time it is supposed to be turned in. The student will lose 7% of his or her grade each day that the assignment is late. The assignment will not be accepted on the 6th day for a grade. The assignment will automatically turn to a 0.

Grading System:

The assignments will be graded on a scale so that Content and Knowledge are worth 50%, Written Communication is 15%, Oral Communication is 15%, Agency is 10%, and Collaboration is 10%.

100 – 93	А
92 – 85	В
84 – 77	С
76 – 70	D
69 – below	F

We are looking forward to an exciting year where everyone is learning and growing together.

Sincerely,

Ms. Garton

Curriculum Framework for

School: First State Military Academy

Course: Calculus

Course Description: This course includes the in-depth study of functions, analysis of graphs, limits, continuity, derivatives at a point and of functions, second derivatives and applications and computation of derivatives: interpretations and properties of definite integrals, applications of integrals, including volumes of solids of revolution, disks, and washer, and the approximations to definite integrals. All topics are covered algebraically, geometrically, and analytically.

Big Idea: To provide all cadets the knowledge, skills, and attributes, to thrive in post-secondary education, work, and civic life.				
Standards Alignment	Unit Concepts/Big Ideas	Driving Questions/Learning Targets	Assessments	
Unit One: Prerequisites for Calculus Timeline: 2 weeks				
CCSS.MATH.CONTENT.HSA.CE D.A.1	Concepts: Increments Slope of a Line	Driving Questions: - How are linear equations used extensively in business and	Summative: - Isotope Project - Quiz	
CCSS.MATH.CONTENT.HSA.CE D.A.2	Parallel and Perpendicular Lines Equations of Lines Functions	economic applications?How are functions and graphs used to form the basis for	Formative: - Workshop Practice	
CCSS.MATH.CONTENT.HSA.CE D.A.4	Domains and Ranges Viewing and Interpreting Graphs Even Functions and Odd	understanding mathematics?How do exponential functions model growth patterns?	 Classwork/Homework Assignments Warm-Ups 	
CCSS.MATH.CONTENT.HSA.RE I.A.10	Functions-Symmetry Functions Defined in Pieces The Absolute Value Function	 How do parametric equations create graphs of relations and functions? 		
CCSS.MATH.CONTENT.HSA.CE	Composite Functions	- How are logarithmic functions		

	Exponential Growth Exponential Decay	used in real-life applications? - How do trigonometric functions	
A.1	Relations Circles	model periodic behavior?	
CCSS.MATH.CONTENT.HSF.IF. A.2 CCSS.MATH.CONTENT.HSF.IF. A.5	Ellipses Lines and Other Curves One-to-One Functions Inverses Finding Inverses	 Learning Targets: Use increments to calculate slopes Write an equation and sketch a graph of a line given specific 	
CCSS.MATH.CONTENT.HSF.IF. A.7a	Logarithmic Functions Properties of Logarithms Radian Measure Graphs of Trigonometric	information - Identify the relationships between parallel lines, perpendicular lines, and slopes	
CCSS.MATH.CONTENT.HSF.IF. A.7b	Functions Periodicity Even and Odd Trigonometric	 Use linear regression equations to solve problems Identify the domain and range 	
CCSS.MATH.CONTENT.HSF.IF. A.7e	Functions Transformations of Trigonometric Graphs	of a function using its graph or equation - Recognize even functions and	
CCSS.MATH.CONTENT.HSF.IF. A.8b	Inverse Trigonometric Functions Big Ideas:	odd functions using equations and graphs - Interpret and find formulas for	
CCSS.MATH.CONTENT.HSF.BF .A.1b	 Review the most important topics necessary to start learning Calculus 	 piecewise defined functions Write and evaluate compositions of two functions 	
CCSS.MATH.CONTENT.HSF.BF .A.1c	 Introduce a graphing utility as an investigative tool to support analytic work 	 Determine the domain, range, and graph of an exponential function 	
CCSS.MATH.CONTENT.HSF.BF .A.3	 Solve problems with numerical and graphical methods Functions and parametric 	 Solve problems involving exponential growth and decay Use exponential regression 	
CCSS.MATH.CONTENT.HSF.BF .A.4	equations are major tools to describe real world situations - Learn the different functions	 equations to solve problems Graph curves that are described, using parametric 	
CCSS.MATH.CONTENT.HSF.BF .A.5	and the behaviors they can describe - Trigonometric functions	equations - Find parameterizations of circles, ellipses, line segments,	

CCSS.MATH.CONTENT.HSF.LE. A.1 CCSS.MATH.CONTENT.HSF.LE. A.3 CCSS.MATH.CONTENT.HSF.LE. A.4 CCSS.MATH.CONTENT.HSF.LE. A.5	 describe cyclic and repetitive activity Exponential, logarithmic, and logistic functions describe growth and decay Polynomial functions can approximate these and most other functions 	 and other curves Identify a one-to-one function Determine the algebraic representation and the graphical representation of a function and its inverse Use parametric equations to graph inverse functions Convert between radians and degrees, and find arc length Identify the periodicity and even-odd properties of the 	
CCSS.MATH.CONTENT.HSF.TF. A.1		trigonometric functions - Find values of trigonometric functions	
CCSS.MATH.CONTENT.HSF.TF. A.2		- Generate graphs for trigonometric functions and	
CCSS.MATH.CONTENT.HSF.TF. A.4		 transformations Use the inverse trigonometric functions to solve problems 	
CCSS.MATH.CONTENT.HSF.TF. A.5			
CCSS.MATH.CONTENT.HSF.TF. A.6			
CCSS.MATH.CONTENT.HSF.TF. A.7			
CCSS.MATH.CONTENT.HSS.ID. B.6			
CCSS.MATH.CONTENT.HSS.ID. B.7			
CCSS.MATH.CONTENT.HSS.ID. B.8			
Unit Two: Limits and Continuity Timeline: 4 weeks			
--	---	---	---
CCSS.MATH.CONTENT.HSA.SS E.A.1	Concepts: Average and Instantaneous	Driving Questions: - How can limits be used to describe continuity, the	Summative: - Insect Population Project
CCSS.MATH.CONTENT.HSA.SS E.B.3	Definition of Limit Properties of Limits One-sided Limits	 derivative, and the integral? How can limits be used to describe the behavior of 	Formative:
CCSS.MATH.CONTENT.HSA.AP R.C.4	Two-sided Limits Sandwich Theorem Finite Limits as $x \rightarrow \pm \infty$	functions for numbers in absolute value? - How do continuous functions	 Classwork/Homework Assignments Warm-Ups
CCSS.MATH.CONTENT.HSA.AP R.D.6	Infinite Limits as $x \rightarrow a$ End Behavior Models Continuity as a Point	describe how a body movesthrough space?How does a tangent line	
CCSS.MATH.CONTENT.HSA.CE D.A.4	Continuous Functions Algebraic Combinations Composites	describe points of motion?	
CCSS.MATH.CONTENT.HSF.IF. B.6	Intermediate Value Theorem for Continuous Functions Average Rates of Change	Learning Targets: - Calculate average and instantaneous speeds	
CCSS.MATH.CONTENT.HSF.IF. C.7	Tangent to a Curve Slope of a Curve Normal to a Curve	 Define and calculate limits for function values and apply the properties of limits Use the Sandwich Theorem to find certain limits indirectly 	
	Big Ideas: - To understand the concept of limit	 Find and verify end behavior models for various functions Calculate limits as <i>x</i> →±∞ and 	
	 To define and calculate limits of function values Use substitution, graphical investigation, numerical approximation, algebra, or some combination to solve limits 	 to identify vertical and horizontal asymptotes Identify the intervals upon which a given functions is continuous and understand the meaning of continuous function 	
	- Use limits to test for continuity	 Remove removable discontinuities by extending or 	

		 modifying a function Apply the Intermediate Value Theorem and the properties of algebraic combination and composites of continuous functions Apply directly the definition of the slope of a curve in order to calculate slopes Find the equations of the tangent line and normal line to a curve at a given point Find the average rate of change of a function 	
Unit Three: Derivatives Timeline: 4 weeks			
	Concepts: Derivative Notation Relationships between the Graphs of <i>f</i> and <i>f</i> ' Graphing the Derivative from Data One-sided Derivatives How <i>f</i> '(<i>a</i>) Might Fail to Exist Differentiability Implies Local Linearity Numerical Derivatives on a Calculator Differentiability Implies Continuity Intermediate Value Theorem for Derivatives Positive Integer Powers, Multiples, Sums, and	 Driving Questions: How can we use the derivative to model the instantaneous change? How can we create a graph when you know the tangent lines at multiple points? How do you use the rules for differentiation to analyze functions quickly? How do derivatives give different rates at which things change? How can sine and cosine graphs describe periodic change? Learning Targets: 	Summative: - Medicine Dosage Project - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups

Other problems involving rates of change Use the rules of differentiating the six basic trigonometric functions Unit Four: More Derivatives Timeline: 4 weeks
Concepts: Driving Questions: Summative:

	Concepts:	Driving Questions:	Summative:
Unit Five:Applications of Derivati Timeline: 6 weeks	ves		
	Chain Rule Implicit Differentiation Inverse Function Inverse Cofunction Identities Logarithmic Differentiation Normal to the Surface Orthogonal Curves Orthogonal Families Power Chain Rule Power Rule for Arbitrary Real Powers Power Rule for Rational Powers of x Big Ideas: - Exploring the Chain Rule - Use the Chain Rule - Use the Chain Rule - Create a derivative for a composite function - Create derivatives of trigonometric functions and their inverses - Calculate derivatives of exponential and logarithmic functions - Use implicit differentiation to find derivatives - Use the Power Rule to find derivatives	 How does the Chain Rule help you differentiate functions? How does implicit differentiation allow us to find derivatives of functions? How do graphs of functions and inverses relate to their derivatives? How do exponential rates model growth rates in the real world? Learning Targets: Differentiate composite functions using the Chain Rule Find slopes of parameterized curves Find derivatives using implicit differentiation Find derivatives using the Power Rule for Rational Powers of x Calculate derivatives of functions Calculate derivatives of exponential and logarithmic functions 	 Professor Project Quiz Formative: Workshop Practice Classwork/Homework Assignments Warm-Ups

Unit Six: The Definite Integral	 Profit Quadratic approximation Related rates Relative change Relative extrema Rolle's Theorem Second Derivative Test Standard linear approximation Stationary point Big Ideas: Drawing conclusions from derivatives about extreme values and the general shape See how tangent lines capture the shape of a curve near a point of tangency Deducing rates of change we cannot measure from rates of change we already know Finding functions from the first derivative and a point Use the Mean Value Theorem to recover functions from derivatives 	Newton's method to approximate the zeros of a function - Estimate the change in a function using differentials - Solve related rate problems	
Timeline: 6 weeks	I		
	Concepts: Area under a curve Average value Bounded function Cardiac output Characteristic function of the	 Driving Questions: How do you estimate with finite sums? What happens to a limit when the numbers are infinitely small or infinitely large? 	Summative: - Lottery Project - Quiz Formative: - Workshop Practice

rationals Definite integral Differential calculus Dummy variable Error bounds Fundamental Theorem of Calculus Integrable function Integral calculus Integral evaluation Theorem Integral of f from a to b Integral sign Integrand Lower bound Lower limit of integration LRAM Mean value Mean Value Theorem for Definite Integrals MRAM Net area NINT Norm of a partition Partition RAM Regular partition Riemann sum Riemann sum for f on the $[a, b]$ RRAM Sigma notation Simpson's Rule Subinterval Total area Trapezoidal Rule Upper bound Upper limit of integration Variable of integration	 How can we connect derivatives and definite integrals? How can we use trapezoids to create numerical approximations? Learning Targets: Approximate the area under the graph of a nonnegative continuous function by using rectangle approximation methods Interpret the area under a graph as a net accumulation of a rate of change Express the area under a curve as a definite integral and as a limit of Riemann sums Compute the area under a curve using a numerical integration procedure Apply rules for definite integrals and find the average value of a function over a closed interval Apply the Fundamental Theorem of Calculus Understand the relationship between the derivative and definite integral as expressed in both parts of the Fundamental Theorem of Calculus Approximate the definite integral by using the trapezoidal Rule and by using 	 Classwork/Homework Assignments Warm-Ups

	 Big Ideas: Calculate instantaneous rates of change Investigate slopes of tangent lines Investigate areas under curves Prove how slopes of tangents and areas under curves are connected 	Simpson's Rule. - Estimate the error in using the Trapezoidal and Simpson's Rules	
Timeline: 4 weeks	s and mathematical modeling		
CCSS.MATH.CONTENT.HSN.Q. A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. CCSS.MATH.CONTENT.HSN.Q. A.2 Define appropriate quantities for the purpose of descriptive modeling. CCSS.MATH.CONTENT.HSG.M G.A.3 Apply geometric methods to solve	Concepts: Antidifferentiation by parts Antidifferentiation by substitution Arbitrary constant of integration Carbon-14 dating Carrying capacity Compounded continuously Constant of integration Continuous interest rate Decay constant Differential equation Direction field Euler's Method Evaluate an integral Exact differential equation General solution to a differential equation Growth constant First-order differential equation First-order linear differential equation Graphical solution of a differential equation Half-life	 Driving Questions: How can we model problems of motion using derivatives? How can we find the antiderivative of <i>f</i>? How does the Product Rule relate derivatives? How does the differential equation dy/dx = ky give insight into exponential growth and decay? How do real world populations grow logistically over extended periods of time? Learning Targets: Construct antiderivatives using the Fundamental Theorem of Calculus Solve initial value problems in the form dy/dx = f(x), yo = f(xo). Construct slope fields using technology and interpret slope 	Summative: - Population Project - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups

design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).*	Heaviside method Indefinite integral Initial condition Initial value problem Integral sign Integrand Integration by parts Law of Exponential Change Leibniz notation for integrals Logistic differential equation Logistic growth model Logistic growth model Logistic regression Newton's Law of Cooling Numerical method Numerical solution of a differential equation Order of a differential equation Particular solution Proper rational function Proper rational function Proper rational function Properties of indefinite integrals Radioactive Radioactive decay Resistance proportional to velocity Second-order differential equation Separable differential equation Separable differential equation Substitution in definite integrals Tabular integration Variable of integration	 fields as visualizations of different equations Use Euler's Method for graphing a solution to an initial value problem Compute indefinite and definite integrals by the method of substitution Use integration by parts to evaluate indefinite and definite integrals Use tabular integration or the method of solving for the unknown integral i order to evaluate integrals that require repeated use of integration by parts Use integration by parts to integrate inverse trigonometric and logarithmic functions Solve problems involving exponential growth and decay in a variety of applications Solve problems involving exponential or logistic population growth 	
	- Predicting future positions from the present position and		

	 known velocity Deduce what we need to know about a function from one of its known values and rate of change Examine the analytic, graphical, and numerical techniques on which we create predictions 		
Unit Eight: Applications of Defin Timeline: 6 weeks	ite Integrals		
CCSS.MATH.CONTENT.HSG.G MD.A.1	Concepts: Arc length Area between curves	Driving Questions: - How can we use an integral to calculate net change and total	Summative: - Pottery Project - Quiz
Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments. <u>CCSS.MATH.CONTENT.HSG.G</u> <u>MD.A.2</u>	Cavalieri's theorems Center of mass Constant-force formula Cylindrical shells Displacement Fluid pressure Foot-pound Force constant Gaussian curve Hooke's Law Inflation rate	 accumulation? How can we calculate the area in between curves? How can we calculate the volume of a three dimensional solid? How can we use definite integrals to calculate the length of a smooth curve? 	Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups
 (+) Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures. <u>CCSS.MATH.CONTENT.HSG.G</u> <u>MD.A.3</u> Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. 	Joule Length of a curve Mean Moment Net change Newton Normal curve Normal pdf Probability density function Smooth curve	 Learning Targets: Solve problems in which a rate is integrated to find the net change over time in a variety of applications Use integration to calculate areas of regions in a plane Use integration by slices or shells to calculate volumes of solids 	

CCSS.MATH.CONTENT.HSG.G MD.B.4 Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.	Smooth function Solid of revolution Standard deviation Surface area Total distance traveled Universal gravitational constant Volume by cylindrical shells Volume by slicing Volume of a solid Weight-density work Big Ideas: - Finding the limits of Riemann sums - Calculate the regular pieces	 Use integration to calculate surface areas of solids of a revolution Use integration to calculate lengths of curves in a plane Adapt their knowledge of integral calculus to model problems involving rates of change in a variety of applications 	
	 using known formulas Evaluate definite integrals with antiderivatives Fit the proper integrable function to the situation at hand Use programs like NINT to help fit antiderivatives to certain situations Break down the irregular whole into regular parts and set up a function to be integrated 		

Calculus Maria Collier maria.collier@fsmilitary.k12.de.us

mcollier@fsmilitary.org

Expectations:

- 1. Use proper salutations.
- 2. Wear your uniform properly
- 3. Come prepared with a notebook, writing utensil, your computer, and homework if necessary.
- 4. Contribute during class discussion.
- 5. Stay on task while working in partners or groups.

Materials Needed Everyday:

Spiral Notebook Writing Utensil Computer

Topics to be covered:

- Unit 1: Prerequisites for Calculus
- Unit 2: Limits and Continuity
- Unit 3: Derivatives
- Unit 4: More Derivatives
- Unit 5: Applications of Derivatives
- Unit 6: The Definite Integral
- Unit 7: Differential Equations and Mathematical Modeling
- Unit 8: Applications of Definite Integrals
- Unit 9: Sequences, L'Hopital's Rule, and Improper Integrals

Assignment Headings

When you turn in work electronically, I need you to put a heading on your assignments so that it is easier to keep track of the assignments along with the members of your group.

Last name: Assignment Title Collier: Order of Operations HW

Group Work Last name: Group members: Assignment Title Collier: Cook, Garton, Irwin: Order of Operation Project

Make-up Work:

Every student has the ability to check his or her assignments from home as long as wifi is available. Make-up work will be taken care of on an individual basis, but students that aren't in school will be expected to contact their groups to make sure that they are contributing as much as possible to help the group run smoothly to finish the projects. Absent students need to check the Agenda to see if there are any daily assignments that need to be accomplished before they come back to school. Assignments will only be accepted up to 5 school days late unless a plan has been created with the teacher.

Late Work

A student has the ability to turn in work up until 5 days after the due date for the assignment. This is for when a student needs to finish an assignment that might not be quite done at the time it is supposed to be turned in. The student will lose points off of his or her grade each day that the assignment is late. The assignment will not be accepted on the 6th day for a grade. The assignment will automatically turn to a 0.

Grading System:

The assignments will be graded on a scale so that Content and Knowledge are worth 50%, Written Communication is 15%, Oral Communication is 15%, Agency is 10%, and Collaboration is 10%.

100 – 93	А
92 – 85	В
84 – 77	С
76 – 70	D
69 – below	F

We are looking forward to an exciting year where everyone is learning and growing together.

Sincerely,

Mrs. Collier

Collaboration Team Checklist High School

The Team Collaboration Checklist is intended to serve as a useful reminder on the important aspects of team dynamics. It is not a rubric for grading purposes, but rather a reminder for student and adult teams about the key conditions for good collaboration. Teams might regularly refer to the collaboration checklist throughout a project, revisit it in moments when their progress is stuck, or us it to reflect on successes and challenges.

We intend these to be two separate docs that serve different purposes. While the Collaboration rubric would feature regularly in project design, facilitation, and assessment, the checklist is more of a supplemental tool to be used as needed to boost team performance. Given the differences between individual and group behaviors it is best to think of these two resources as complimenting each other rather than being aligned to one another.

New Tech Network Team Collaboration Checklist

Behavior	Description
Equal Participation	Each member is equally engaged in the work of team, as represented by the role each member plays in accomplishing the task and how well each voice is heard during discussion. Established roles allow for equal participation.
Project Management	The team has collaboratively developed a context-specific plan for task completion that is regularly updated to reflect needed adjustments throughout the timeline.
Making Decisions	The team uses a transparent process, or set of processes, for making decisions that impact the entire group.
Physical Disposition	The team members exhibit physical cues that suggest active listening, engagement, and an openness to new ideas. In addition, team meetings are physically organized in ways that best support collaborative and cooperative work.
Creating/Using Norms	The team has established and is using a set of norms that guide the behavior of the team. The team regularly revisits the norms to assess their effectiveness and to determine whether they are an accurate reflection of the team's behavior.
Intellectual Discourse	The team regularly engages in constructive intellectual discourse aimed at deepening the team's understanding of key ideas and individual perspectives related to the task at hand.
Passionate Ownership	The team exhibits shared and passionate ownership over the successful completion of the task. All group members are made to feel valuable, that their contributions are meaningful, and their accomplishments are celebrated.
Conflict Resolution	The team anticipates that conflict may happen, and has a plan for addressing it directly. Group members engage constructively and reference both the plan and their norms when conflict occurs.

Collaboration Rubric High School

Overview

In designing our collaboration rubric, we drew a distinction between individual and group behaviors. While both are important for successful collaboration, distinguishing between the two provides useful guidance for how to support and assess student progress.

The Individual Collaboration Rubric focuses on specific aspects of individual collaboration. The indicators are designed to be simple and accessible to students using the Peer Evaluation Tool as well as instructive to guide group conversations. The number of dimensions (rows) for this rubric makes it unlikely a teacher would use it in its entirety. A teacher might opt to focus on particular rows by project or a school might focus on particular indicators in particular grade levels. Schools may also find opportunities to bring additional collaboration and project management skills to extend this outcome as their students grow as collaborators and we encourage you to do so.

Individual Collaboration – High School

Collaboration involves behaviors under the control of individual group members including effort they put into group tasks, their manner of interacting with others on group, and the quantity and quality of contributions they make to group discussions.

	Emerging	ED	Developing	DP	Proficient	PA	Advanced
Contribution and Development of	Ideas lack supporting reasoning		Shares ideas, and explains the reasons behind them		Provides ideas or arguments with convincing reasons		Acknowledges the strengths and limitations of their ideas
lueas	Limited acknowledgement of others' thinking		Acknowledges others' thinking		Builds on the thinking of others		Builds on the thinking of others and checks back for agreement
Equal Participation	Shares ideas without listening or listens without sharing ideas		Allows for equal participation by both sharing ideas and listening to the ideas of others		Encourages equal participation by asking clarifying or probing questions, paraphrasing ideas, and synthesizing group thinking		In addition to proficient, actively invites others to participate equitably, promoting divergent and creative perspectives
Group Norms	Follows group norms and processes but only with modeling and/or reminders		Understands and follows group created norms and processes		Understands and follows group created norms and processes and helps others do the same		In addition to proficient, initiates the use of norms and group processes in each meeting
Respectful Tone and Style	At times, words and tone indicate respectful intent, but not consistently		Words and tone indicate respectful intent, but might not be sensitive to others		Words and tone indicate respect and sensitivity to others		In addition to proficient, provides gentle feedback about others' words and tone to foster an environment of respect
Positive Body Language/ Active Listening	Sporadically faces speaker, or engages without distraction some of the time		Faces speaker and is free of distractions when others are speaking		When others are speaking, both body language and verbal responses indicate engagement		When others are speaking, body language and verbal responses indicate positive, energetic engagement
Roles	Knows role, and fulfills it only some of the time		Accepts role and shows understanding by fulfilling it		Knows the roles of self and others , and uses the roles to maximize group effectiveness		In addition to proficient, uses group roles as opportunities to use strengths or address areas of weakness
Work Ethic	Completes only some assigned tasks		Completes all assigned tasks by deadline		Completes all assigned tasks by deadline; work is quality, and advances the project		Models consistently high standards for timeliness, quality, and ownership of work
	Comes to meetings without evidence of preparation		Comes to meetings partially prepared		Comes to meetings fully prepared		Preparation for meetings surpasses expectations
Team Support	Either doesn't help , or occasionally helps, but must be asked		Predictably helps when asked by others, but only then		Always helps when asked, and sometimes offers help to others		Actively checks in to understand how others are progressing and how they can be of help

@newtechnetwork

[®]2017 New Tech Network

Curriculum Framework for

School: First State Military Academy

Course: <u>Geometry</u>

Course Description:

Students discover, explore and make conjectures about geometric concepts and relationships including parallelism, congruence, similarity, area, volume, trigonometry and coordinate geometry. Emphasis is placed on discovery of patterns, real life problem solving using technology, mathematical connections to other disciplines, critical thinking, reasoning, and communicating mathematics. Algebra skills are reviewed and strengthened throughout the course through the application of geometric concepts. Content is aligned to the Delaware Core Standards and the new SAT.

Big Idea: To provide all cadets the knowledge, skills, and attributes, to thrive in post-secondary education, work, and civic life.

Standards Alignment	Unit Concepts/Big Ideas	Driving Questions/Learning Targets	Assessments			
Unit One: Basics of Geometry Timeline: About 5 weeks						
CCSS.Math.Content.HSG-MG.A. 1 - Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).	Concepts: Points Lines Planes Rays Line Segments	 Driving Questions: Why do we measure? Why are geometric figures and terms used to represent and describe real-world situations? How are geometric figures and 	Summative: - FSMA Blueprint Project - Quiz Formative: - Workshop Practice			

CCSS.Math.Content.HSG-GPE. B.7 - Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. CCSS.Math.Content.HSG-GPE. B.4 - Use coordinates to prove simple geometric theorems algebraically. CCSS.Math.Content.HSG-CO .A.1 - Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc. Unit Two: Parallel and Perpentime Timeline: About 3 weeks	Midpoint Formula Distance Formula Perimeter Circumference Area Measuring Angles Complementary Angles Supplementary Angles Supplementary Angles Adjacent Angles Linear Pair Big Ideas: - Create an awareness of the structure of a math system, connecting definitions, postulates, reasoning, and theorems - Use construction to explore attributes of geometric figures and to make conjectures about geometric relationships - Use 1D and 2D coordinate systems to represent points, lines, rays, line segments, and figures - Find areas of regular polygons, circles, and composite figures	terms used on maps/blueprints? Learning Targets: - To identify special angle pairs and use their relationships to find angle measures - To find and compare lengths of segments - To find the midpoint of a segment - To find the distance between two points in the coordinate plane - To find the perimeter of circumference of basic shapes - To find the area of basic shapes - To find and compare the measure of angles - To identify special angle pairs and use their relationships to find angle measures	 Classwork/Homework Assignments Warm-Ups
Timeline: About 3 weeks	I		
 CCSS.Math.Content.HSG-MG.A. 3 - Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or 	Concepts: Parallel Lines Skew Lines Parallel Planes Transversal	 Driving Questions: Why do we have undefined terms such as point and line? How can we use undefined terms? 	Summative: - Photography Project - Quiz Formative:

 minimize cost; working with typographic grid systems based on ratios). CCSS.Math.Content.HSG-GPE. B.5 - Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point). CCSS.Math.Content.HSG-CO.D. 12 - Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular lines, including the perpendicular lines, including the parallel to a given line through a point not on the line. 	Interior Angles Exterior Angles Corresponding Angles Alternate Interior Angles Alternate Exterior Angles Same-Side Interior Angles Congruency Perpendicular Lines Slope Big Ideas: - Make conjectures about lines and determine the validity of those conjectures - Make conjectures about angles and determine the validity of those conjectures - Use slopes to investigate geometric relationships, including parallel and perpendicular lines	 Why do architects, carpenters, and engineers use parallel and perpendicular lines to design buildings, furniture, and machines? Learning Targets: To identify relationships between figures in space To identify angles formed by two lines and a transversal To use properties of parallel lines to find angle measures To relate parallel and perpendicular lines 	 Workshop Practice Classwork/Homework Assignments Warm-Ups
CCSS.Math.Content.HSG-CO.C. 9 - Prove theorems about lines and angles.			
CCSS.Math.Content.HSG-CO.A. 1 - Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of			

point, line, distance along a line, and distance around a circular arc.			
Unit Three: Polygons and Q Timeline: About 6 weeks	uadrilaterals		
 CCSS.Math.Content.HSG-MG.A. 3 - Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). CCSS.Math.Content.HSG-MG.A. 1 - Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). CCSS.Math.Content.HSG-GPE. B.4 - Use coordinates to prove simple geometric theorems algebraically. CCSS.Math.Content.HSG-CO.C. 11 - Prove theorems about parallelograms. 	Concepts: Polygon Triangle Quadrilateral Pentagon Hexagon <i>n</i> -gon Parallelogram Square Rectangle Rhombus Trapezoid Kite Big Ideas: - Use patterns to make generalizations about geometric properties, including properties of polygons - Formulate and test conjectures about the properties and attributes of polygons - Use formulas involving length, slope and midpoint to determine the type of quadrilateral - Formulate and test conjectures about the properties and attributes of polygons	 Driving Questions: Why do we name figures? How much do we need to know before we can start making assumptions? Learning Targets: To find and use the sum of the measures of the interior angles of a polygon To find and use the sum of the exterior angles of a polygon To recognize and apply properties of the sides and angles of parallelograms To recognize and apply properties of the diagonals of parallelograms To determine whether a quadrilateral is a parallelograms To define and classify special types of parallelograms To use properties of diagonals of rhombuses and rectangles To verify and use properties of trapezoids and kites 	Summative: - Quadrilateral Detective Problem Set - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups

Unit Four: Congruent Triang Timeline: About 4 weeks	gles		
Timeline: About 4 weeks CCSS.Math.Content.HSG-SRT. B.5 - Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures. CCSS.Math.Content.HSG-CO.D. 12 - Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular lines, including the parallel to a given line through a point not on the line. CCSS.Math.Content.HSG-GPE. B.4 - Use coordinates to prove simple geometric theorems algebraically. CCSS.Math.Content.HSG-CO.C. 10 - Prove theorems about triangles.	Concepts: Acute Triangle Equiangular Triangle Obtuse Triangle Right Triangle Scalene Triangle Isosceles Triangle Equilateral Triangle Congruent Congruent Polygons Corresponding Parts Congruent Priangles Congruent Triangles Congruency Statement Side-Side-Side Congruence Side-Angle-Side Congruence Included Side Angle-Angle-Side Congruence Hypotenuse-Leg Congruence Hypotenuse Big Ideas: - Use patterns to make generalizations about geometric properties - Use logical reasoning to prove statements are true	 Driving Questions: How can you compare two objects? How can you tell if two objects are congruent? How can you tell if two triangles are congruent? What is the importance of manufacturing an item the same way every time it is made? Learning Targets: To identify and classify triangles by and and side measures To apply the Triangle Angle-Sum Theorem and the Exterior Angle Theorem Name and use corresponding parts of congruent polygons Prove triangles congruent using the definition of congruence Use the SSS and SAS Postulates to test for triangle congruence To prove two triangles congruent using the ASA Congruence Postulate and the AAS, and HL Congruence 	Summative: - Joanna's Cafe Project - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups
\mathbf{b} - Explain now the criteria for triangle congruence (ASA, SAS,		Ineorems	

Г

 and SSS) follow from the definition of congruence in terms of rigid motions. CCSS.Math.Content.HSG-CO.B. 7 - Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent. 			
Unit Five: Relationships Wit Timeline: About 3 weeks	thin Triangles		
CCSS.Math.Content.HSG-SRT. B.5 - Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures. CCSS.Math.Content.HSG-CO.D. 12 - Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.	Concepts: Triangle Midsegment Perpendicular Bisector Angle Bisector Bisectors in Triangles Medians Altitudes Inequalities in One Triangle Inequalities in Two Triangles Big Ideas: - Use slope and equations of lines to investigate geometric relationships, including special segments of triangles - Analyze geometric relationships in order to verify conjectures	 Driving Questions: What makes a triangle a triangle? How are the sides and angles of a triangle related? Learning Targets: To use midsegments of triangles in the coordinate plane To use the Triangle Midsegment Theorem to find Distances To use properties of perpendicular bisectors and angle bisectors To identify properties of perpendicular bisectors and angle bisectors To identify properties of medians and altitudes in 	 Summative: Card Design Project (want to change this project next year) Quiz Formative: Workshop Practice Classwork/Homework Assignments Warm-Ups

 CCSS.Math.Content.HSG-CO.C. 9 - Prove theorems about lines and angles. CCSS.Math.Content.HSG-CO.C. 10 - Prove theorems about triangles. CCSS.Math.Content.HSG-C.A.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle. 		 triangles To recognize and apply properties of inequalities to the relationships between the angles and sides of a triangle To apply inequalities in two triangles 				
Unit Six: Right Triangles and Trigonometry Timeline: About 5 weeks						
 CCSS.Math.Content.HSG-SRT. D.10 - (+) Prove the Laws of Sines and Cosines and use them to solve problems. CCSS.Math.Content.HSG-SRT. C.8 - Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. CCSS.Math.Content.HSG-SRT. C.7 - Explain and use the relationship between the sine and cosine of complementary angles. CCSS.Math.Content.HSG-SRT. C.6 - Understand that by similarity, side ratios in right 	Concepts: The Pythagorean Theorem 45°-45°-90° Triangles 30°-60°-90° Triangles Trigonometry Ratio Sine Cosine Tangent Angles of Elevation Angles of Depression The Law of Sines The Law of Cosines Big Ideas: - Justify conjectures about geometric figures - Extend and use the Pythagorean Theorem	 Driving Questions: Why do we use mathematics to model real-world situations? Where can mathematics be found in video game programming? Learning Targets: To use the Pythagorean Theorem and its converse To use the properties of 45°-45°-90° and 30°-60°-90° triangles To use sine, cosine, and tangent ratios to determine side lengths and angle measures in right triangles To solve problems involving angles of elevation and 	Summative: - Video Game Project - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups			

triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles. CCSS.Math.Content.HSG-MG.A. 3 - Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). CCSS.Math.Content.HSG-CO.C. 10 - Prove theorems about triangles.	 Identify and apply patterns from right triangles to solve meaningful problems, including special right triangles (45°-45°-90° and 30°-60°-90°) and triangles with sides that are Pythagorean triples Develop, apply, and justify triangle similarity relationships, such as trigonometric ratios using a variety of methods 	 depression To use angles of elevation and depression to find the distance between two objects To use the Law of Sines to solve triangles To use the Law of Cosines to solve triangles 	
Unit Seven: Proportions and Timeline: About 5 weeks	d Similarity		
 CCSS.Math.Content.HSG-MG.A. 3 - Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). CCSS.Math.Content.HSG-SRT. A.2 - Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for 	Concepts: Ratio Proportion Cross Product Similar Polygons Scale Factor Similar Triangles Triangle Similarity Angle-Angle Similarity Side-Side-Side Similarity Side-Angle-Side Similarity Right Triangle Similarity Proportions in Triangles Big Ideas: - Use ratios to solve problems	 Driving Questions: How can two objects be similar? How does similarity in mathematics compare to similarity in everyday life? Learning Targets: To write ratios To write and solve proportions To use proportions to identify similar polygons To solve problems using the properties of similar polygons To identify similar triangles using the AA Similarity 	Summative: - Mini Golf Madness Project - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups

triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides. CCSS.Math.Content.HSG-SRT. B.4 - Prove theorems about triangles. CCSS.Math.Content.HSG-SRT. B.5 - Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.	 involving similar figures Create and test conjectures about the properties and attributes of polygons and their corresponding parts based on explorations and concrete models 	 Postulate and the SSS and SAS Similarity Theorems To use similar triangles to solve problems To find and use relationships in similar right triangles To recognize and use proportional relationships of corresponding angle bisectors, altitudes, and medians of similar triangles To use the Triangle Bisector Theorem 				
Unit Eight: Transformations Timeline: About 5 weeks						
 CCSS.Math.Content.HSG-CO.A. 4 - Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments. CCSS.Math.Content.HSG-CO.A. 5 - Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another. CCSS.Math.Content.HSG-GMD. B.4 - Identify the shapes of 	Concepts: Reflection Translation Rotation Center of Rotation Angle of Rotation Transformation Glide Reflection Symmetry Line of Symmetry Axis of Symmetry Rotational Symmetry Dilation Big Ideas: - Use congruence transformations to make conjectures and justify properties of geometric figures	 Driving Questions: Where can transformations be found? Why is symmetry desirable? Learning Targets: To draw reflections To draw reflections in the coordinate plane To draw translations To draw translations in the coordinate plane To draw rotations To draw rotations To draw rotations in the coordinate plane To draw rotations of isometries in the coordinate plane 	Summative: - MC Escher Art Project - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups			

two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects. CCSS.Math.Content.HSG-CO.A. 2 - Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to	 To draw compositions of reflections in parallel and intersecting lines To identify line and rotational symmetries in 2D figures To identify plane and axis symmetries in 3D figures To draw dilations To draw dilations in the coordinate plane 	
those that do not (e.g., translation versus horizontal stretch).		
CCSS.Math.Content.HSG-CO.A. 3 - Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.		
CCSS.Math.Content.HSG-SRT. A.1a - A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.		
CCSS.Math.Content.HSG-SRT. A.1b - The dilation of a line segment is longer or shorter in the ratio given by the scale factor.		

Unit Nine: Surface Area and Timeline: About 4 weeks	l Volume		
CCSS.Math.Content.HSG-GMD. B.4 - Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.	Concepts: Cross Section Lateral Faces Lateral Edges Altitude Height Base Edges Lateral Area	 Driving Questions: How are 2D and 3D figures related? Learning Targets: To find the surface area of a prism and a cylinder To find the surface area of a 	Summative: - Marketing Mania (Product Packaging) Project - Quiz Formative: - Workshop Practice - Classwork/Homework
CCSS.Math.Content.HSG-GMD. A.3 - Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.	Composite Solid Regular Pyramid Slant Height Right Cone Oblique Cone	 pyramid and a cone To find the volume of a prism and a cylinder To find the volume of a pyramid and a cone 	Assignments - Warm-Ups
CCSS.Math.Content.HSG-GMD. A.1 - Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone.	Prism Cylinder Basic Area Formulas Sphere Big Ideas: - Find surface areas and	 To find the surface area and and the volume of a sphere 	
CCSS.Math.Content.HSG-MG.A. 3 - Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).	 volumes of prisms, pyramids, spheres, cones, cylinders, and composites of these figures Describe the effect on area and volume when one or more dimensions of a figure are changed 		
CCSS.Math.Content.HSG-MG.A. 1 - Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a			

cylinder). CCSS.Math.Content.HSG-MG.A. 2 - Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). Unit Ten: Probability Timeline: About 3 weeks			
 CCSS.Math.Content.HSS-CP.9 - (+) Use permutations and combinations to compute probabilities of compound events and solve problems. CCSS.Math.Content.HSS-MD.7 - (+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game). CCSS.Math.Content.HSG-MG.3 - Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). CCSS.Math.Content.HSS-MD.6 - (+) Use probabilities to make 	Concepts: Event Experiment Sample Space Tree Diagram Two-Stage Experiment Multistage Experiment Fundamental Counting Principle Intersection Complement Permutation Factorial Circular Permutation Combination Geometric Probability Compound Event Independent Events Dependent Events Mutually Exclusive Conditional Probability Two-Way Frequency Table Marginal Frequencies Joint Frequencies Relative Frequency	 Driving Questions: How can probability be used to predict the likelihood of different outcomes of the games that we play? Learning Targets: To use lists, tables, and tree diagrams to represent sample spaces To use the Fundamental Counting Principle to count outcomes To describe events as subsets of sample spaces by using intersections and unions To find probabilities of complements To use combinations with probability To use combinations with probability To find probabilities by using lengths To find probabilities by using 	Summative: - Create a Game Project - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups

fair decisions (e.g., drawing by lots, using a random number generator). CCSS.Math.Content.HSS-CP.2 - Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. CCSS.Math.Content.HSS-CP.3 - Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B. CCSS.Math.Content.HSS-CP.4 - Construct and interpret two-way	 Big Ideas: Understand sample spaces and design simulations Compute probabilities for independent, dependent, mutually exclusive, not mutually exclusive, and conditional events Calculate geometric probabilities 	 area To apply the multiplication rule to situations involving independent events To apply the multiplication rule to situations involving dependent events To apply the addition rule to situations involving mutually exclusive events To apply the addition rule to situations involving events that are not mutually exclusive To find the probability of events given the occurrence of other events To explain conditional probability and independence of everyday events To decide whether events are independent by using two-way frequency tables To approximate conditional probabilities by using two-way frequency tables 	
frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities.			

CCSS.Math.Content.HSS-CP.6 - Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model.		
CCSS.Math.Content.HSS-CP.1 - Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").		
CCSS.Math.Content.HSS-CP.7 - Apply the Addition Rule, $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$, and interpret the answer in terms of the model.		

Develop Growth Mindset: I can grow my intelligence and skills through effort, practice, and challenge. The brain grows bigger with use, like a muscle.								
	EMERGING	E/D	DEVELOPING	D/P	PROFICIENT	P/A	ADVANCED	
Use Effort and Practice to Grow	• Does not connect effort or practice to getting better at a skill, improved work quality, or performance		• Superficially connects effort and practice to getting better at a skill, improved work quality, or performance		• Understands how effort and practice relate to getting better at skills, improved work quality, or performance		• Understands that effort and practice improve skills, work quality, and performance and that the process takes patience and time	
Seek Challenge	 Rarely takes on academic challenges and risks to pursue learning 		 With encouragement, sometimes takes on academic challenges and risks to pursue learning 		 Seeks academic challenges and takes risks to pursue learning 		• Strategically and independently seeks academic challenges and takes risks to pursue learning	
	• Struggles to identify the personal barriers (mindset, beliefs, circumstances) that inhibit taking risks		 Superficially describes personal barriers (mindset, beliefs, circumstances) that inhibit taking risks 		 Analyzes personal barriers (mindset, beliefs, circumstances) that inhibit taking risks 		 Analyzes and overcomes personal barriers (mindset, beliefs, circumstances) that could inhibit taking risks 	
Grow from Setbacks	 Identifies challenges, failures, or setbacks, but does not describe reactions to them (e.g. giving up or trying harder) 		 Identifies challenges, failures, or setbacks and describes reactions to them (e.g. giving up or trying harder) 		 Identifies challenges, failures, or setbacks and reflects on how reactions to them (e.g. giving up or trying harder) affect process, product, or learning 		 Reflects on personal or academic growth from challenges, failures, or setbacks as well as why and how reactions (e.g. giving up or trying harder) affect the process, product, and learning 	
Build Confidence	• Struggles to identify academic strengths, previous successes, or endurance gained from personal struggle to build confidence in academic success for a new task, project, or class		 Identifies an academic strength, previous success, or endurance gained through personal struggle, but does not use these skills to build confidence in success for a new task, project, or class 		 Builds confidence in success (on a new task, project, or class) by knowing and using academic strengths, previous success, or endurance gained through personal struggle 		• Consistently confident that success is possible (on a new task, project, or class) by knowing and using academic strengths, previous successes, or endurance gained through personal struggle	

Find Personal Relevance onnec goals, r towards autonor	and with significant finds personal ce in the work by ing it to interests or effecting on progress mastery, or identifying nous choices	• With support, sometimes finds personal relevance in the work by connecting it to interests or goals, reflecting on progress towards mastery, or identifying autonomous choices		 Often finds personal relevance in the work by connecting it to interests or goals, reflecting on progress towards mastery, or identifying autonomous choices 		 Independently seeks and finds personal relevance in the work by connecting it to interests or goals, reflecting on progress towards mastery, or identifying autonomous choices
--	---	--	--	--	--	--

Take Ownership Over One's Learning: I can learn how to learn and monitor progress to be successful on tasks, school, and life.

	EMERGING	E/D	DEVELOPING	D/P	PROFICIENT	P/A	ADVANCED
Meet Benchmarks	• Completes few benchmarks and class assignments and may resist or struggle to use resources and supports (e.g. study groups, teacher support, workshops, tutorials)		• Completes some benchmarks and class assignments; and, only when forced to, or at the last minute, uses resources and supports (e.g. study groups, teacher support, workshops, tutorials)		 Usually completes polished benchmarks and class assignments by using resources and supports when necessary (e.g. study groups, teacher support, workshops, tutorials) 		• Achieves personal best work on almost all benchmarks and class assignments by setting goals, monitoring progress, and using resources and supports (e.g. study groups, teacher support, workshops, tutorials)
Seek Feedback	 Rejects feedback and/or does not revise work 		• Sometimes shows evidence of accepting feedback to revise work, but at times may resist when it's difficult		 Consistently shows evidence of accepting and using feedback to revise work to high quality 		 Consistently shows evidence of actively seeking, identifying, and using feedback to revise work to high quality
Tackle and Monitor Learning	 For a task or project, superficially identifies what is known, what needs to be learned, and how hard it will be 		• For a task or project, identifies what is known, what needs to be learned, and how hard it will be; but may not use a strategy to tackle the task or does not monitor how well the strategy is working		• For a task or project identifies what is known, what needs to be learned, and how hard it will be; uses a strategy and steps to tackle the task; and monitors how well the approach and effort are working		• For a task or project, identifies what is known, what needs to be learned, and how hard it will be; selects an appropriate strategy and takes steps to tackle the task; and monitors and adjusts based on how well the approach and effort are working
Actively Participate	• Stays focused for part of the activity/discussion, team meeting, or independent time but often cannot resist distraction or does not notice when or why a loss of focus happens		• Mostly stays focused on the activity/discussion, team meeting, or independent time and knows when and why disengagement or distraction happens		• Actively participates in the activity/discussion, team meeting, or independent time and has strategies for staying focused and resisting most distraction		 Actively participates and takes initiative on the activity/discussion, team meeting, or independent time and has personal strategies for staying focused

Build Relationships	• Does not build relationships with trusted adults or peers to get back on track as needed or to enhance learning	• Does not initiate building relationships, but has a few trusted adults or peers to get back on track as needed or to enhance learning	 Builds and uses relationships with trusted adults and peers to get back on track as needed and to enhance learning 	 Actively builds trusting relationships with adults and peers to pursue goals, enhance learning, and get back on track as needed
Impact Self & Community	 Identifies the ups and downs of the classroom and home community 	Has limited understanding of individual role in the ups and downs of the classroom and home community	 Analyzes individual role in the ups and downs of the classroom and home community 	 Monitors and adjusts individual role to positively influence the ups and downs of the classroom and home community

Oral Communication Rubric, High School

Overview

Interpersonal Communication Section - Focuses on the listening and speaking skills exhibited by individual students in a wide variety of informal conversations (e.g. student and teacher, student and student and expert). While there is some unavoidable overlap with the Collaboration Rubric, the Collaboration rubric emphasizes how teammates should talk to one another while collaborating.

Presentation Section - Focuses on the elements of a strong presentation. This section of the rubric could be used in its entirety to describe a complete presentation - though it's often good to focus on a few dimensions (rows), or indicators (bullets). Useful for providing a group grade on a presentation.

Delivery Section - Focuses on the individual aspects of a presentation and can be used to provide individualized grades for a student in a presentation, even in the case of a group presentation.

Interpersonal Communication The ability to communicate knowledge and thinking through effective informal, pair, and small group conversations.								
	EMERGING	E/D	DEVELOPING	D/P	PROFICIENT College Ready	P/A	ADVANCED College Level	
Listening and Comprehension	After listening, shows recall of some key details but limited understanding of main points		After listening, shows recall of some key details and main points		After listening, can synthesize main points and reference key details		After listening, can synthesize main points, reference key details, and evaluate the strength or value of the ideas	
Clear Presentation of Ideas	Communicates ideas in an unclear way ; ideas are difficult to follow		Communicates ideas clearly most of the time , occasionally ideas are difficult to follow		Communicates ideas clearly		Communicates ideas clearly, adjusting as needed to enhance clarity for audience	
Asking Questions	Asks questions that repeat stated details or main points		Ask questions that help clarify a topic or a line of reasoning		Asks thoughtful questions that develop or challenge a topic or line of reasoning		Asks thoughtful questions that develop or challenge a line of reasoning and explore connections to a larger theme or idea	

Γ

PRESENTATION The ability to communicate knowledge and thinking orally.							
	EMERGING	E/D	DEVELOPING	D/P	PROFICIENT College Ready	P/A	ADVANCED College Level
Clarity	Central message is unclear or unstated		Central message can be deduced but may not be explicit		Presents a clear central message		Presents a central message that is clear and original
	Does not include alternate perspectives when appropriate		Includes alternate perspectives when appropriate		Addresses alternative or opposing perspectives when appropriate		Addresses alternative or opposing perspectives i n a way that sharpens one's own perspective
Evidence	Draws on facts, experience, or research in a minimal way		Draws on facts, experience, and/or research inconsistently		Draws on facts, experiences and research to support a central message		Facts, experience and research are synthesized to support a central message
	Demonstrates limited understanding of the topic		Demonstrates an incomplete or uneven understanding of the topic		Demonstrates an understanding of the topic		emonstrate an in-depth understanding of the topic
Organization	•A lack of organization and/or transitions makes it difficult to follow the presenter's ideas and line of reasoning		Inconsistencies in organization and limited use of transitions detract from audience understanding of line of reasoning		Organization and transitions reveal the line of reasoning		Organization and transitions supports the line of reasoning
Use of Digital Media / Visual displays	Digital media or visual displays are confusing, extraneous, or distracting		Digital media or visual displays are informative and relevant		Digital media or visual displays are informative and support audience engagement and understanding		Digital media or visual displays are polished , informative, and support audience engagement and understanding

DELIVERY The ability to communicate knowledge and thinking orally.							
	EMERGING	E/D	DEVELOPING	D/P	PROFICIENT College Ready	P/A	ADVANCED College Level
Language Use	Uses language and style that is unsuited to the purpose, audience, and task Stumbles over words, interfering with audience understanding		Uses language and style that is at times unsuited to the purpose, audience, and task Speaking is fluid with minor lapses of awkward or incorrect language use that detracts from audience understanding		Uses appropriate language and style that is suited to the purpose, audience, and task Speaking is fluid and easy to follow		Uses sophisticated and varied language that is suited to the purpose, audience, and task Speaking is consistently fluid and easy to follow
Presentation Skills	Makes minimal use of presentation skills: lacks control of body posture; does not make eye contact; voice is unclear and/or inaudible; and pace of presentation is too slow or too rushed Presenter's energy and affect are unsuitable for the audience and purpose of the presentation		Demonstrates a command of some aspects of presentation skills, including control of body posture and gestures, language fluency, eye contact, clear and audible voice, and appropriate pacing Presenter's energy, and/or affect are usually appropriate for the audience and purpose of the presentation, with minor lapses		Demonstrates a command of presentation skills, including control of body posture and gestures, eye contact, clear and audible voice, and appropriate pacing Presenter's energy and affect are appropriate for the audience and support engagement		Demonstrates consistent command of presentation skills, including control of body posture and gestures, eye contact, clear and audible voice, and appropriate pacing in a way that keeps the audience engaged Presenter maintains a presence and a captivating energy that is appropriate to the audience and purpose of the presentation
Interaction with Audience	Provides a vague response to questions Demonstrates a minimal command of the facts or understanding of the topic		Provides an indirect or partial response to questions; Demonstrates a partial command of the facts or understanding of the topic		Provides a direct and complete response to questions Demonstrates an adequate command of the facts and understanding of the topic		Provides a precise and persuasive response to questions Demonstrates an in-depth understanding of the facts and topic

Curriculum Framework for

School: First State Military Academy

Course: Precalculus

Course Description:

This course provides algebraic and graphical explorations of polynomial, rational, exponential, logarithmic, and inverse functions with real life applications. In addition, trigonometric functions are studied as circular functions with applications to triangle problems. Topics include trigonometric identities, inverse trigonometric functions and oblique triangle trigonometry. Limits and sequences and series will be introduced if time permits. Extensive use of the graphing calculator will assist the student in a balanced approach to solving problems.

Big Idea: To provide all cadets the knowledge, skills, and attributes, to thrive in post-secondary education, work, and civic life.

Standards Alignment	Unit Concepts/Big Ideas	Driving Questions/Learning Targets	Assessments
Unit One: Functions from a Timeline: About 4 weeks	Calculus Perspective		
CCSS.Math.Content.F.BF.1 - Build a function that models a relationship between two quantities	Concepts: Set-builder notation Interval notation Implied domain	Driving Questions: - How are functions used throughout the business world?	Summative: - Project - Quiz
c. (+) compose functions CCSS.Math.Content.F.BF.4.b -	Placewise-defined function Relevant domain Zeros	 How are functions used to analyze costs, predict sales, calculate profit, forecast future 	Formative: - Workshop Practice - Classwork/Homework

function is the inverse of another. CCSS.Math.Content.F.BF.4.c - (+) Read values of an inverse function from a graph or a table, given that the function has an inverse. CCSS.Math.Content.F.BF.4.d - (+) Produce an invertible from a non-invertible function by restricting the domain	Line symmetry Point symmetry Event function Odd function Continuous Limit Discontinuous Infinite Jump Point Removable Nonremovale Discontinuities End behavior Increasing Decreasing Constant Maximum Minimum Extrema Average rate of change Secant line Transformation Translation Reflection Dilation Parent square root Quadratic cubic Reciprocal absolue value step Greatest integer functions Composition Inverse relation Inverse function One-to-one Big Ideas: - Identify functions and	 depreciation, and determine the proper labor force? Learning Targets: To describe subsets of real numbers To identify and evaluate functions and state their domains To use graphs of functions to estimate function values To identify even and odd functions To use limits to determine the continuity of a function To use limits to describe the end behavior of functions To find intervals on which functions are increasing, constant, or decreasing To identify, graph, and describe parent functions To identify and graph transformations of functions To perform operations with functions To find compositions of functions To use the horizontal line test to determine whether a function has an inverse function To find inverse functions algebraically and graphically 	- Warm-Ups
---	--	---	------------

	 determine their domains, ranges, y-intercepts, and zeros Evaluate the continuity, end behavior, limits, and extrema of a function Calculate rate of change of nonlinear functions Identify parent functions and transformations Perform operations with functions, identify composite functions, and calculate inverse functions 		
Unit Two: Power, Polynomi Timeline: About 3 weeks	al, and Rational Functions		
CCSS.Math.Content.F.IF.7 - Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. ★ d. Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.	Concepts: Power function Monomial function Radical function Extraneous solutions Polynomial function Leading coefficient Leading-term test Turning point Quadratic form Repeated zero Multiplicity Synthetic division Depressed polynomial Synthetic substitution Rational Zero Theorem Descartes' Rule of Signs Fundamental Theorem of Algebra Linear Factorization Theorem Complex conjugates	 Driving Questions: How are polynomial functions used when designing and building new structures? How do architects use functions to determine the weight and strength of the materials, analyze the costs, estimate deterioration of materials, and determine the proper labor force? Learning Targets: To graph and analyze power functions To graph and analyze radical functions and solve radical equations To graph polynomial functions To model real-world data with 	Summative: - Project - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups

	-	-	-
	 Rational function Asymptote Vertical asymptote Horizontal asymptote Oblique asymptote Holes Polynomial inequality Sign chart Rational inequality Big Ideas: Graph and analyze power, radical, polynomial, and rational functions Divide polynomials using long division and synthetic division Use the Remainder and Factor Theorems Find all zeros of polynomial functions Solve radical and rational equations Solve polynomial and rational inequalities 	 polynomial functions To divide polynomials using long division and synthetic division To use the Remainder and Factor Theorems To find real zeros of polynomial functions To find complex zeros and polynomial functions To analyze and graph rational functions To solve rational equations To solve polynomial inequalities To solve rational inequalities 	
Unit Three: Exponential and Timeline: About 4 weeks	I Logarithmic Functions		
CCSS.Math.Content.F.BF.5 - (+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents	Concepts: Algebraic function Transcendental function Exponential function Natural base Continuous compound interest Logarithmic function with base b Logarithm Common logarithm	 Driving Questions: How are exponential functions used to model the growth and decline of populations of endangered species? Learning Targets: To evaluate, analyze, and graph exponential functions 	Summative: - Project - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups

	 Natural logarithm Logistic growth function Linearize Big Ideas: Identify the mathematical domains, ranges, and end behaviors of exponential and logarithmic functions Use the properties of exponents and logarithms to solve exponential and logarithmic equations Collect and organize data, make and interpret scatter plots, fit the graph of a function to the data, and interpret the results Use function models to predict and make decisions and critical judgements Use nonlinear regression 	 To solve problems involving exponential growth and decay To evaluate expressions involving logarithms To sketch and analyze graphs of logarithmic functions To apply properties of logarithms To apply the Change of Base Formula To apply the One-to-One Property of Exponential Functions to solve equations Apply the One-to-One Property of Logarithmic Functions to solve equations To model data using exponential, logarithmic, and logistic functions To Linearize and analyze date 	
Unit Four: Trigonometric Fu Timeline: About 3 weeks	inctions		
CCSS.Math.Content.F.TF.3 - (+) Use special triangles to determine geometrically the values of sine, cosine, tangent for $\Box/3$, $\Box/4$, and $\Box/6$, and use the unit circle to express the values of sine, cosine, and tangent for $\Box - x$, $\Box + x$, and $2\Box - x$ in terms of their values for x, where x is any real number	Concepts: Trigonometric functions Reciprocal function Inverse trigonometric function Angles of elevation and depression Vertex Initial side Terminal side Standard position Radian	 Driving Questions: How is trigonometry used in satellite navigation? How are the techniques used in satellite navigation also used when navigating cars, planes, ships, and spacecraft? Learning Targets: To find values of trigonometric functions for acute angles of 	Summative: - Project - Quiz Formative: - Workshop Practice - Unit circle coffee filter activity - Classwork/Homework Assignments - Warm-Ups

 CCSS.Math.Content.F.TF.4 - (+) Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions. CCSS.Math.Content.F.TF.6 - (+) Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed CCSS.Math.Content.F.TF.7 - (+) Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context. ★ CCSS.Math.Content.F.BF.1 - Build a function that models a relationship between two quantities c. (+) compose functions CCSS.Math.Content.F.BF.4.b - (+) Verify by composition that one function is the inverse of another. CCSS.Math.Content.F.BF.4.c - (+) Read values of an inverse function from a graph or a table, given that the function has an inverse. 	Coterminal angles Linear speed Angular speed Sector Quadrantal angle Reference angle Unit circle Circular function Periodic function Period Sinusoid Amplitude Frequency Phase shift Vertical shift Midline Sin ⁻¹ function Cos ⁻¹ function Cos ⁻¹ function Tan ⁻¹ function Oblique triangles Law of Sines Ambiguous case Law of Cosines Heron's Formula Big Ideas: - Solve right triangles using trigonometric functions - Convert between degrees and radians - Solve real-world problems using trigonometric functions - Graph trigonometric functions and their inverses - Solve oblique triangles and find their area using various laws and formulas	 right triangles To solve right triangles To convert degree measures of angles to radian measures and vice versa Use angle measures to solve real-world problems To find values of trigonometric functions for any angle To find values of trigonometric functions using the unit circle To graph transformations of the sine and cosine functions To use sinusoidal functions to solve problems To graph tangent and reciprocal trigonometric functions To graph damped trigonometric functions To evaluate and graph inverse trigonometric functions To find compositions of trigonometric functions To solve oblique triangles by using the Law of Sines or Law of Cosines To find areas of oblique triangles 	
---	---	--	--

CCSS.Math.Content.F.BF.4.d - (+) Produce an invertible from a non-invertible function by restricting the domain Unit Five: Trigonometric Ide Timeline: About 4 weeks	entities and Equations		
CCSS.Math.Content.F.TF.9 - (+) Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.	Concepts: Identity Trigonometric identity Cofunction Odd-even identities Verify an identity Reduction identity Big Ideas: - Identify and use trigonometric identities to find trigonometric values - Use trigonometric identities to simplify and rewrite trigonometric expressions - Verify trigonometric identities - Solve trigonometric equations - Use sum and difference identities to evaluate trigonometric functions - Use double-angle, power-reducing, half-angle, and product-to-sum identities to evaluate trigonometric expressions and solve trigonometric equations	 Driving Questions: What makes a triangle a triangle? How are the sides and angles of a triangle related? Learning Targets: To identify and use basic trigonometric identities to find trigonometric values To use basic trigonometric identities to simplify and rewrite trigonometric expressions To verify trigonometric identities To determine whether equations are identities To solve trigonometric equations using algebraic techniques To solve trigonometric equations using basic identities To use sum and distance identities to evaluate trigonometric functions To use sum and difference identities to solve trigonometric 	Summative: - Project - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups

		equations - To use double-angle, power-reducing, half-angle and product-to-sum identities to evaluate trigonometric expressions and solve trigonometric equations	
Unit Six: Systems of Equati Timeline: About 3 weeks	ons and Matrices		
CCSS.Math.Content.N.VM.6 - (+) Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network CCSS.Math.Content.N.VM.7 - (+) Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled CCSS.Math.Content.N.VM.8 - (+) Add, subtract, and multiply matrices of appropriate dimensions CCSS.Math.Content.N.VM.9 - (+) Understand that, unlike	Concepts: Multivariable linear system, Row-echelon form Gaussian elimination Augmented matrix Coefficient matrix Reduced row-echelon form Gauss-Jordan elimination Identity matrix Inverse matrix Inverse matrix Inverse Invertible Singular matrix Determinant Square system Cramer's Rule Partial fraction Partial fraction decomposition Optimization	 Driving Questions: Why has linear programming become a standard tool for many businesses, like farming? What are constraints farmers must take into account to maximize profits? Learning Targets: To solve systems of linear equations using matrices and Gaussian elimination To solve systems of linear equations using matrices and Gauss-Jordan elimination To multiply matrices To find determinants and inverses of 2x2 and 3x3 	Summative: - Project - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups
multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties CCSS.Math.Content.N.VM.10 -	Linear programming Objective function Constraints Feasible solutions Multiple optimal solutions Unbounded	 matrices To solve systems of linear equations using inverse matrices To solve systems of linear equations using Cramer's Rule To write partial fraction 	

 (+) Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse CCSS.Math.Content.A.REI.8 - (+) Represent a system of linear equations as a single matrix equation in a vector variable CCSS.Math.Content.A.REI.9 - (+) Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices for dimension 3x3 or greater). 	 Big Ideas: Solve systems of linear equations using matrices and Gaussian or Gauss-Jordan elimination Multiply matrices Find determinants and inverses of 2x2 and 3x3 matrices Solve systems of linear equations using inverse matrices and Cramer's Rule Write partial fraction decompositions of rational expressions with linear and irreducible quadratic factors Use linear programming to solve applications Recognize situations in which there are no solutions or more than one solutions of a linear programming application 	 decompositions of rational expressions with linear factors in the denominator Write partial fraction decompositions of rational expressions with prime quadratic factors in the denominator To use linear programming to solve applications To recognize situations in which there are multiple points at which a function is optimized 	
Unit Seven: Conic Sections Timeline: About 5 weeks	and Parametric Equations		
CCSS.Math.Content.G.GPE.3 - (+) Derive the equations of the ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant. CCSS.Math.Content.G.GMD.2 - (+) Give an informal argument using Cavalieri's principle for the formulas for the volume of a	Concepts: Conic section Degenerate conic Locus Parabola Focus Directrix Axis of symmetry Vertex Latus rectum Ellipse	 Driving Questions: When a ball is hit or thrown, like a baseball, why can the bath of the ball be represented and traced by parametric equations? Learning Targets: To analyze and graph equations of parabolas To write equations of 	Summative: - Project - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups

sphere and other solid figures	Foci Major axis Center Minor axis Vertices Co-vertices Eccentricity Hyperbola Transverse axis Conjugate axis Parametric equation Parameter Orientation Parameter Orientation Parametric curve Big Ideas: - Analyze, write, and graph equations of parabolas, ellipses, circles, and hyperbolas - Use equations to identify types of conic sections - Use rotation of axes to write equations of rotated conic sections - Graph rotated conic sections - Graph parametric equations - Solve problems related to the motion of projectiles	 parabolas To analyze and graph equations of ellipses and circles To use equations to identify ellipses and circles Analyze and graph equations of hyperbolas To use equations to identify types of conic sections To find rotation of axes to write equations of rotated conic sections To graph rotated conic sections To graph parametric equations To solve problems related to the motion of projectiles 	
Timeline: About 3 weeks			
CCSS.Math.Content.N.VM.1 - (+) Recognize vector quantities as having both magnitude and	Concepts: Vector Initial point	 Driving Questions: How are vectors used to model changes in direction due to 	Summative: - Project - Quiz

direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., v, v , v , v). CCSS.Math.Content.N.VM.2 - (+) Find the components of a vector by subtracting the coordinated of an initial point from the coordinates of a terminal point CCSS.Math.Content.N.VM.3 - (+) Solve problems involving velocity and other quantities that can be represented by vectors CCSS.Math.Content.N.VM.4.a - Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitude CCSS.Math.Content.N.VM.4.b - Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum CCSS.Math.Content.N.VM.4.c - Understand vector subtraction v - w as v + (-w), where -w is the additive inverse of w, with the same magnitude as w and pointing in the opposite direction. REpresent vector subtraction	Terminal point Standard position Direction Magnitude Quadrant bearing True bearing Parallel vectors Opposite vectors Resultant Zero vector Components Component form Unit vector Linear combination Dot product Orthogonal Vector projection Work 3D coordinate system Z-axis Octant Ordered triple Cross product Torque Triple scalar product Big Ideas: - Represent and operate with vectors both geometrically and algebraically - Resolve vectors into their rectangular components - Write a vector as the linear combination of unit vectors - Find the dot product of two vectors and use the dot product to find the angle between them	 water and air currents? Learning Targets: To represent and operate with vectors geometrically To solve vector problems and resolve vectors into their rectangular components To represent and operate with vectors in the coordinate plane To write vector as a linear combination of unit vectors To find the dot product of two vectors and use the dot product to find the angle between them To find the projection of one vector onto another To plot points and vectors in the 3D coordinate system To find dot products of and angles between vectors in space To find cross products of vectors in space 	Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups
---	--	--	--

graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise. CCSS.Math.Content.N.VM.5.a - Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g. as $c(v_x, v_y) = (cv_x, cv_y)$ CCSS.Math.Content.N.VM.5.b - Compute the magnitude of a scalar multiple cv using $ cv =$ c v. Compute the direction of cv knowing that when $ c v \neq 0$, the direction of cv is either along v (for c > 0) or against v (for c < 0)	 Find the projection of one vector onto another Graph and operate with vectors in space Find the dot and cross product of and angles between vectors in space Find areas of parallelograms and volumes of parallelepipeds in space 		
Unit Nine: Polar Coordinate Timeline: About 3 weeks	s and Complex Numbers		
CCSS.Math.Content.N.CN.3 - (+) Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers CCSS.Math.Content.N.CN.4 - Represent complex numbers and their operations on the complex plane. (+) Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary	Concepts: Polar coordinate system Polar axis Polar coordinate Polar equation Polar graph Limaçon Cardioid Rose Lemniscate Spiral of Archimedes Complex plane Real axis	 Driving Questions: How can polar equations be used to model sound patterns to help determine state arrangement, speaker and microphone placement, and volume and recording levels? How can they also be used with lightning and camera angles when concerts are filmed? Learning Targets: 	Summative: - Project - Quiz Formative: - Workshop Practice - Classwork/Homework Assignments - Warm-Ups

numbers), and explain why the rectangular and polar forms of a given complex number represent the same number CCSS.Math.Content.N.CN.5 - (+) Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation CCSS.Math.Content.N.CN.6 - (+) Calculate the distance between numbers in the complex plane as the modulus of the difference, and the midpoint of a segment as the average of the numbers and its points	 Imaginary axis Argand plane Absolute value of a complex number Polar form Trigonometric form Modulus Argument pth roots of unity Big Ideas: Graph points with polar coordinates Graph polar equations Identify and graph classic polar curves Convert between polar and rectangular coordinates Identify polar equations Identify polar equations of conics Write and graph the polar equation of a conic given its eccentricity and the equation of its directrix Convert complex numbers from rectangular to polar form and vice versa Find products, quotients, and roots of complex numbers in polar form 	 To graph points with polar coordinates To graph simple polar equations To graph polar equations To identify and graph classical curves To convert between polar and rectangular coordinates To convert between polar and rectangular equations To identify polar equations of conics To write and graph the polar equation of a conic given its eccentricity and the equation of its directrix To convert complex numbers from rectangular to polar form and vice versa To find products quotients, powers, and roots of complex numbers in polar form 						
Unit Ten: Sequences and Series Timeline: About 4 weeks								
	Concepts:	Driving Questions:	Summative:					

		1
Sequence Term Finite sequence Infinite sequence Recursive sequence Explicit sequence Fibonacci sequence Converge Diverge Series Finite series nth partial sum Infinite series Sigma notation Arithmetic sequence Common difference Arithmetic means First difference Second difference Arithmetic series Geometric sequence Common ratio Geometric means Geometric series Principle of mathematical induction Anchor step Inductive hypothesis Inductive step Extended principle of mathematical induction Binomial coefficients Pascal's triangle Binomial Theorem Power series Exponential series Exponential series Euler's Formula	 How are sequences and series used to predict patterns? Learning Targets: To investigate several different types of sequences To use sigma notation to represent and calculate sums of series To find nth terms and arithmetic means of arithmetic sequences To find nth terms of arithmetic sequences To find nth terms of geometric means of geometric sequences To find sums of n terms of geometric sequences To find sums of n terms of geometric sequences To find sums of n terms of geometric sequences To find sums of n terms of geometric series and the sums of infinite geometric series To use mathematical induction to prove summation formulas and properties of divisibility involving a positive integer n To use Pascal's Triangle to write binomial expansions To use the Binomial Theorem to write and find the coefficients of specified terms in binomial expansions To use a power series to represent a rational function To use power series representation to approximate value of transcendental functions 	 Project Quiz Formative: Workshop Practice Classwork/Homework Assignments Warm-Ups

COURSE OVERVIEW:

The Introduction to Applied Math course will prepare students to enter the work force or to attend college with an understanding of the mathematics in the real world. The course will help students develop quantitative literacy as a habit of mind and an approach to problems that employs and enhances both statistics and mathematics. The main goal of the course is for students to see that mathematics is a powerful tool for living, as they develop confidence with mathematics, habits of inquiry and logical thinking, and the ability to use mathematics to make decisions in everyday life. Topics address the math used to run our country's households, businesses, and governments, such as the mathematics of consumption, inflation, depreciation, borrowing, saving, and taxation, as well as the mathematics of logic, likelihood, statistics, and sports.

EXPECTED OUTCOMES

Students are expected to perform at a proficient level on a variety of tasks and assessments addressing the Common Core Standards for Mathematical Practice and selected high school Common Core State Standards for Math. Levels of proficiency are defined near the end of this course outline under Performance Criteria.

Common Core State Standards for Mathematical Practice (SMP)

- 1. Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- 8. Look for and express regularity in repeated reasoning.

INSTRUCTIONAL METHOD AND/OR STRATEGIES:

A variety of instructional strategies will be utilized to accommodate all learning styles. Universal Design for Learning strategies and guidelines will be utilized to provide choices to address the learning needs of students with disabilities, English Language Learners and students of low or high abilities in each lesson and unit.

PERFORMANCE CRITERIA:

Students will be assessed on knowledge and content as well as agency, oral communication, and written communication. The New Tech Network High School rubrics will be utilized. The students will self-assess using the rubrics as well as the teacher.

Common Core Mathematical Standards

Reasoning with Equations & Inequalities

Reason quantitatively and use units to solve problems.

CCSS.MATH.CONTENT.HSN.Q.A.1

Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.

CCSS.MATH.CONTENT.HSN.Q.A.2

Define appropriate quantities for the purpose of descriptive modeling.

CCSS.MATH.CONTENT.HSN.Q.A.3

Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.

Linear, Quadratic, & Exponential Model

Construct and compare linear, quadratic, and exponential models and solve problems.

CCSS.MATH.CONTENT.HSF.LE.A.1

Distinguish between situations that can be modeled with linear functions and with exponential functions. CCSS.MATH.CONTENT.HSF.LE.A.1.B

Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

CCSS.MATH.CONTENT.HSF.LE.A.1.BC

Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

CCSS.MATH.CONTENT.HSF.LE.A.3

Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

Statistics and Probability

Interpreting Categorical and Quantitative Data

CCSS.MATH.CONTENT.HSS.ID.A

Summarize, represent, and interpret data on a single count or measurement variable.

CCSS.MATH.CONTENT.HSS-ID.A.2

Use statistics appropriate to the shape of the data distribution to compare center (median.

mean) and spread (interquartile range, standard deviation) of two or more different data sets. CCSS.MATH.CONTENT.HSS-ID.A.3

Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme date points (outliers).

Make inferences and justify conclusions from sample surveys, experiments, and observational studies CCSS.MATH.CONTENT.HSS.IC.B.3

Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.

CCSS.MATH.CONTENT.HSS.IC.B.6

Evaluate reports based on data.

Conditional Probability and the Rules of Probability

CCSS.MATH.CONTENT.HSS-CP.A

Understand independence and conditional probability and use them to interpret data.

CCSS.MATH.CONTENT.HSS-CP.A.5

Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.

Using Probability to Make Decisions

CCSS.MATH.CONTENT.HSS-MD.A

Calculate expected values and use them to solve problems.

CCSS.MATH.CONTENT.HSS-MD.B

Use probability to evaluate outcomes of decisions.

CCSS.MATH.CONTENT.HSS-MD.7

(+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game.)

COURSE CONTENT AND SUGGESTED TIME ALLOTMENT:

Content sequencing, activities, and time allocations are only suggestions and may be adjusted to suit school site curriculum plans, available materials, and student needs.

Unit 1: The Mathematics of Calculation

Duration: 16 days

Description:

Students use computational skills to make sense of and solve problems in real-world contexts. First, students use the order of operations to evaluate expressions including formulas. Next, they use technology to solve problems, analyzing the results in terms of the context to determine if solutions are reasonable. Then, students solve a variety of real-world problems involving percent. Finally, they use units as a way to understand problems and to guide the solution of multi-step problems.

Standards Addressed:

Common Core Standards for Mathematical Practice 1-8 <u>CCSS.MATH.CONTENT.HSN.Q.A.1</u> <u>CCSS.MATH.CONTENT.HSN.Q.A.2</u> <u>CCSS.MATH.CONTENT.HSN.Q.A.3</u>

Unit 2: The Mathematics of Consumption

Duration: 15 days

Description:

In this unit, students study the mathematics involved in making purchases and budgeting. Students will analyze and compare unit prices in making purchases. They will find markup and discounts, including finding final prices after multiple discounts. Students will find sales tax, excise tax, and value-added tax on items. Finally, students will learn how to create, balance and analyze a monthly budget, write checks and balance a checkbook.

Standards Addressed:

Common Core Standards for Mathematical Practice 1-8

Unit 3: The Mathematics of Logic and the Media

Duration: 17 days

Description:

In this unit, students study the mathematics involved in logic and the media. Students use set and set diagrams to describe unions, intersections and complements of sets. Students will study statements and negations, deductive an inductive reasoning, and recognize fallacies in logic.

Standards Addressed:

Common Core Standards for Mathematical Practice 1-8 <u>CCSS.MATH.CONTENT.HSS.IC.B.3</u> <u>CCSS.MATH.CONTENT.HSS.IC.B.6</u>

Unit 4: The Mathematics of Inflation and Depreciation

Duration: 16 days

Description:

In this unit, students study the mathematics involved in inflation and depreciation. Students will study exponential growth and decay, inflation and the consumer price index, and depreciation.

Standards Addressed: Common Core Standards for Mathematical Practice 1-8 CCSS.MATH.CONTENT.HSF.LE.A.1 CCSS.MATH.CONTENT.HSF.LE.A.1.B CCSS.MATH.CONTENT.HSF.LE.A.1.C CCSS.MATH.CONTENT.HSF.LE.A.3

Unit 5: The Mathematics of Taxation

Duration: 15 days

Description:

In this unit, students study the mathematics involved in taxation. Students will study flat tax and political philosophy, graduated income tax, property tax, social security and payroll taxes.

Standards Addressed:

Common Core Standards for Mathematical Practice 1-8

Unit 6: The Mathematics of Borrowing and Saving

Duration: 16 days

Description:

In this unit, students study the mathematics involved in borrowing and saving. Students will be introduced to lending, including promissory notes and loans. They will create an amortization table and analyze the cost of buying on credit. Students will compare rates and terms for home mortgages, and compare the costs of buying and renting. Finally, students will analyze savings and retirement plans.

Standards Addressed:

Common Core Standards for Mathematical Practice 1-8

Unit 7: The Mathematics of Patterns and Nature

Duration: 15 days

Description:

In this unit, students study the mathematics involved in patterns and nature. Students will recognize and describe linear, exponential, quadratic, and other patterns in nature, art, and science.

Standards Addressed:

Common Core Standards for Mathematical Practice 1-8 <u>CCSS.MATH.CONTENT.HSF.LE.A.1</u> <u>CCSS.MATH.CONTENT.HSF.LE.A.1.B</u> <u>CCSS.MATH.CONTENT.HSF.LE.A.1.C</u> <u>CCSS.MATH.CONTENT.HSF.LE.A.3</u>

Unit 8: The Mathematics of Likelihood

Duration: 15 days

Description:

In this unit, students study the mathematics of likelihood. Students will use probability to describe the likelihood of an event, analyze likelihood of a risk, and describe actuarial data. They will find theoretical and experimental probability, and find expected values for events.

Standards Addressed:

Common Core Standards for Mathematical Practice 1-8 <u>CCSS.MATH.CONTENT.HSS-CP.A</u> <u>CCSS.MATH.CONTENT.HSS-MD.A</u> <u>CCSS.MATH.CONTENT.HSS-MD.B</u>

Unit 9: The Mathematics of Description

Duration: 15 days

Description:

In this unit, students study the mathematics of description. Students will read, interpret and create stacked area graphs and radar graphs. Students will use mean, median and mode to describe average value of a data set, and understand the effect of outliers on averages. They will read and understand box-and-whisker plots and histograms. Students will use standard deviation to describe dispersion of a data set, and compare different types of distributions. Finally, students will study various sampling methods.

Standards Addressed:

Common Core Standards for Mathematical Practice 1-8

CCSS.MATH.CONTENT.HSS.ID.A

CCSS.MATH.CONTENT.HSS.ID.A.2

CCSS.MATH.CONTENT.HSS.ID.A.3

Unit 10: The Mathematics of Fitness and Sports

Duration: 16 days

Description:

In this unit, students study the mathematics involved in fitness and sports. Students will study various statistics related to a person's fitness and health, and also statistics used in a variety of sports activities.

Standards Addressed:

Common Core Standards for Mathematical Practice 1-8

Universal Design for Learning Guidelines

I. Provide Multiple Means of **Representation**

1: Provide options for perception

- 1.1 Offer ways of customizing the display of information
- 1.2 Offer alternatives for auditory information
- 1.3 Offer alternatives for visual information

II. Provide Multiple Means of Action and Expression

4: Provide options for physical action

- 4.1 Vary the methods for response and navigation
- 4.2 Optimize access to tools and assistive technologies

5: Provide options for expression and communication

- 5.1 Use multiple media for communication
- 5.2 Use multiple tools for construction and composition

5.3 Build fluencies with graduated levels of support for practice and performance

6: Provide options for executive functions

- 6.1 Guide appropriate goal-setting
- 6.2 Support planning and strategy development
- 6.3 Facilitate managing information and resources
- 6.4 Enhance capacity for monitoring progress

9: Provide options for self-regulation

9.1 Promote expectations and beliefs that optimize motivation

III. Provide Multiple Means of

Engagement

7: Provide options for recruiting interest

7.3 Minimize threats and distractions

7.1 Optimize individual choice and autonomy

7.2 Optimize relevance, value, and authenticity

8.1 Heighten salience of goals and objectives

8.3 Foster collaboration and community

8.4 Increase mastery-oriented feedback

8: Provide options for sustaining effort and persistence

8.2 Vary demands and resources to optimize challenge

- 9.2 Facilitate personal coping skills and strategies
- 9.3 Develop self-assessment and reflection

Strategic, goal-directed learners

Purposeful, motivated learners

© 2011 by CAST. All rights reserved. **www.cast.org, www.udlcenter.org** APA Citation: CAST (2011). Universal design for learning guidelines version 2.0. Wakefield, MA: Author.

2: Provide options for language, mathematical expressions, and symbols

- 2.1 Clarify vocabulary and symbols
- 2.2 Clarify syntax and structure
- 2.3 Support decoding of text, mathematical notation, and symbols
- 2.4 Promote understanding across languages
- 2.5 Illustrate through multiple media

3: Provide options for comprehension

- 3.1 Activate or supply background knowledge
- 3.2. Highlight patterns, critical features, big ideas, and relationships
- 3.3 Guide information processing, visualization, and manipulation
- 3.4 Maximize transfer and generalization

Resourceful, knowledgeable learners

NTN Written Communication Rubric, Grade 10

The ability to effectively communicate knowledge and thinking through writing by organizing and structuring ideas and using discipline appropriate language and conventions.

	EMERGING	E/ D	DEVELOPING	D/ P	PROFICIENT	P/ A	ADVANCED 12 Grade Proficient
DEVELOPMENT What is the evidence that the student can develop ideas?	 Does not explain background or context of topic/issue Controlling idea* is unclear or not evident throughout the writing Ideas and evidence are underdeveloped 		 Provides a cursory or partial explanation of background and context of topic/issue Controlling idea* is present but unevenly addressed throughout the writing Ideas and evidence are somewhat developed 		 Addresses appropriate background and context of topic/issue Controlling idea* is presented clearly throughout the writing Ideas and evidence are developed 		 Explains appropriate background and context of topic/issue Controlling idea* is consistently maintained throughout the writing Ideas and evidence are developed
ORGANIZATION What is the evidence that the student can organize and structure ideas for effective communication?	 Ideas and evidence are disorganized, making relationships unclear No transitions are used, or are used ineffectively Conclusion, when appropriate, is absent or restates the introduction or prompt 		 Ideas and evidence are loosely sequenced or organization may be formulaic Transitions connect ideas with some lapses; may be repetitive or formulaic Conclusion, when appropriate, follows from the controlling idea 		 Ideas and evidence are sequenced to show relationships Transitions connect ideas Conclusion, when appropriate, follows from and supports the controlling idea 		 Ideas and evidence are logically sequenced to show clear relationships Transitions are varied and connect ideas, showing clear relationships Conclusion, when appropriate, is logical and raises important implications
LANGUAGE AND CONVENTIONS What is the evidence that the student can use language skillfully to communicate ideas?	 Language, style, and tone are inappropriate to the purpose, task, and audience. Uses norms and conventions of writing that are inappropriate to the discipline/genre** Has an accumulation of errors in grammar, usage, and mechanics that distract or interfere with meaning Textual citation is missing or incorrect, when appropriate 		 Language, style, and tone are mostly appropriate to the purpose, task, and audience with minor lapses Attempts to follow the norms and conventions of writing in the discipline/genre** with major errors Has some minor errors in grammar, usage, and mechanics that partially distract or interfere with meaning Cites textual evidence with partially or using an incorrect format, when appropriate 		 Language, style, and tone are appropriate to the purpose, task, and audience with minor lapses Attempts to follow the norms and conventions of writing in the discipline/genre** with some errors Is generally free of distracting errors in grammar, usage, and mechanics Cites textual evidence with some minor errors, when appropriate 		 Language, style, and tone are appropriate to the purpose, task, and audience Follows the norms and conventions of writing in the discipline/genre with minor errors** Is free of distracting errors in grammar, usage, and mechanics Cites textual evidence consistently and accurately, when appropriate

*Controlling idea may refer to a thesis, argument, topic, or main idea, depending on the type of writing

**E.g. accurate use of scientific/technical terms, quantitative data, and visual representations in science; use of multiple representations in math

Created with support from Stanford Center for Assessment, Learning, and Equity (SCALE and based on similar rubrics from Envision Schools. The Attribution-NonCommercial-ShareAlike 3.0 Unported license means that people can use our materials, must give appropriate credit, and indicate if any changes have been made. They may not use the material for any commercial purpose. And they must re-share any adaptations under the same kind of license.

NTN Written Communication Rubric, Grade 12

The ability to effectively communicate knowledge and thinking through writing by organizing and structuring ideas and using discipline appropriate language and conventions.

	EMERGING	E/ D	DEVELOPING	D/ P	PROFICIENT College Ready	P/ A	ADVANCED College Level
Development What is the evidence that the student can develop ideas?	 Does not explain background or context of topic/issue Controlling idea* is unclear or not evident throughout the writing Ideas and evidence are underdeveloped 		 Provides a cursory or partial explanation of background and context of topic/issue Controlling idea* is evident but unevenly addressed throughout the writing Ideas and evidence are somewhat developed 		 Explains appropriate background and context of topic/issue Controlling idea* is consistently maintained throughout the writing Ideas and evidence are developed 		 Thoroughly explains appropriate background and context of topic/issue Controlling idea* is clearly and consistently communicated throughout the writing Ideas and evidence are thoroughly developed and elaborated
ORGANIZATION What is the evidence that the student can organize and structure ideas for effective communication?	 Ideas and evidence are disorganized or loosely sequenced; relationships are unclear No transitions are used, or are used ineffectively Conclusion, when appropriate, is absent or restates the introduction or prompt 		 Ideas and evidence are somewhat organized but not always logically sequenced to show relationships Transitions connect ideas with minor lapses, or may be repetitive or formulaic Conclusion, when appropriate, follows from the controlling idea 		 Ideas and evidence are logically sequenced to show clear relationships Transitions are varied and connect ideas, showing clear relationships Conclusion, when appropriate, follows from and supports the controlling idea 		 Ideas are logically sequenced to present a coherent whole Transitions are varied and clearly orient the reader in the development and reasoning of the controlling idea Conclusion, when appropriate, is logical and raises important implications
LANGUAGE AND CONVENTIONS What is the evidence that the student can use language skillfully to communicate ideas?	 Language, style, and tone are inappropriate to the purpose, task, and audience Attempts to follow the norms and conventions of writing in the discipline/genre with major, consistent errors Has an accumulation of errors in grammar, usage, and mechanics that distract or interfere with meaning Textual citation is missing or incorrect, when appropriate 		 Language, style, and tone are appropriate to the purpose, task, and audience with minor lapses Follows the norms and conventions of writing in the discipline/genre with consistent errors Has some minor errors in grammar, usage, and mechanics that partially distract or interfere with meaning Cites textual evidence with some minor errors, when appropriate 		 Language, style, and tone are appropriate to the purpose, task, and audience Follows the norms and conventions of writing in the discipline/genre** with minor errors Is generally free of distracting errors in grammar, usage, and mechanics Cites textual evidence consistently and accurately, when appropriate 		 Language, style, and tone are tailored to the purpose, task, and audience Consistently follows the norms and conventions of writing in the discipline/genre Is free of distracting errors in grammar, usage, and mechanics Cites textual evidence consistently and accurately, when appropriate

*Controlling idea may refer to a thesis, argument, topic, or main idea, depending on the type of writing

**E.g. accurate use of scientific/technical terms, quantitative data, and visual representations in science; use of multiple representations in math

Created with support from Stanford Center for Assessment, Learning, and Equity (SCALE and based on similar rubrics from Envision Schools. The Attribution-NonCommercial-ShareAlike 3.0 Unported license means that people can use our materials, must give appropriate credit, and indicate if any changes have been made. They may not use the material for any commercial purpose. And they must re-share any adaptations under the same kind of license.

