AP Physics B Formula Study Sheet NEWTONIAN MECHANICS

Kinematics	$\Delta x = area under v-t graph$ $\Delta v = area under a-t graph$
Net Force	$F_{net} = ma$
Friction force	$F_f = \mu N$
centripetal acceleration	$a_c = \frac{v^2}{r}$
torque	$\tau = rF$
momentum	p = mv
impulse	$\mathbf{J} = \mathbf{F} \Delta \mathbf{t} = \mathbf{m} \Delta \mathbf{v}$
kinetic energy	$\mathbf{K} = \frac{1}{2}\mathbf{m}\mathbf{v}^2$
gravitational potential energy	$U_g = mgh$
mechanical work	$W = F\Delta x$
power (general definition)	$\mathbf{P} = \frac{W_{net}}{\Delta t}$
power in terms of velocity	$\mathbf{P} = \mathbf{F}\mathbf{v}$
spring force	$F_s = kx$
spring potential energy	$U_{s} = \frac{1}{2}kx^{2}$
period of a spring	$T_s = 2\pi \sqrt{\frac{m}{k}}$
period of a pendulum	$T_p = 2\pi \sqrt{\frac{l}{g}}$
relationship between period and frequency	$T = \frac{1}{f}$
gravitational force in terms of Newton's law of universal gravitation	$\mathbf{F}_{\mathbf{G}} = \frac{Gm_1m_2}{r^2}$
gravitational potential energy in terms of Newton's law of universal gravitation	$U_{\rm G} = \frac{Gm_1m_2}{r}$

absolute pressure in a fluid	$\mathbf{P} = \mathbf{P}_0 + \rho \mathbf{g} \mathbf{h}$
gage pressure	$P = \rho g h$
buoyant force	$F_{bouy} = \rho V g$
fluid flow continuity	$A_1v_1 = A_2v_2$
volume flow rate	A_1v_1
Bernoulli's principle	$P + \rho gy + \frac{1}{2}\rho v^2 = constant$
pressure (general definition)	$\mathbf{P} = \frac{F}{A}$
ideal gas law	$PV = nRT = Nk_BT$
internal energy in a gas	$K_{avg} = \frac{3}{2}k_BT$
velocity of a gas molecule	$\mathbf{v}_{\rm rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3k_{\rm\scriptscriptstyle B}T}{\mu}}$
thermal work	$W = P\Delta V$ or area under graph
change in internal energy	$\Delta U = Q + W$
efficiency (general)	$\mathbf{e} = \frac{W_{net}}{Q_{in}}$
ideal (Carnot) efficiency	$\mathbf{e_c} = \frac{T_H - T_C}{T_H}$

FLUID MECHANICS AND THERMAL PHYSICS

ELECTRICITY AND MAGNETISM

Electrostatic force	$F_{e} = \frac{kq_{1}q_{2}}{r^{2}}$
Electrostatic field	$\mathbf{E} = \frac{kq_1}{r^2}$
Electrostatic potential energy	$U_{e} = \frac{kq_{1}q_{2}}{r}$
Electrostatic potential	$\mathbf{V} = \frac{kq_1}{r}$
Charge on a capacitor	Q = VC
Capacitance	$\mathbf{C} = \frac{\varepsilon_0 A}{d}$
Energy stored in a capacitor	$U_{\rm C} = \frac{1}{2} {\rm QV} = \frac{1}{2} {\rm CV}^2$
Current (definition)	$\mathbf{I} = \frac{\Delta Q}{\Delta t}$
Resistance of a wire	$\mathbf{R} = \frac{\rho l}{A}$
Ohm's Law	V = IR
Power in a circuit	$\mathbf{P} = \mathbf{I}\mathbf{V} = \frac{V^2}{R} = \mathbf{I}^2\mathbf{R}$
Equivalent resistor for series	$\mathbf{R}_{\mathrm{eq}} = \mathbf{R}_1 + \mathbf{R}_2 + \dots$
Equivalent resistor for parallel	$\mathbf{R}_{eq} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \dots\right)^{-1}$
Equivalent capacitance for series	$C_{eq} = \left(\frac{1}{C_1} + \frac{1}{C_2} + \dots\right)^{-1}$
Equivalent capacitance for parallel	$C_{eq} = C_1 + C_2 + \dots$

Magnetic force on a moving charge in a magnetic field	$F_{\rm B} = qvBsin\theta$
Magnetic force on a current carrying wire in a magnetic field	$F_B = BIlsin\theta$
Magnetic field around a current carrying wire	$\mathbf{B} = \frac{\mu_0 I}{2\pi r}$
Magnetic flux	$\Phi_{\rm m} = {\rm BAcos}\theta$
Average EMF generated by a changing magnetic field	$\boldsymbol{\mathcal{E}}_{\text{avg}} = -\frac{\Delta \Phi_m}{\Delta t}$
EMF generated by a loop moving into or out of a magnetic field	$\epsilon = Blv$

Force **BII**'s **qvB**

Take \mathbf{E} ast \mathbf{Blv} d when the flux is changing.

WAVES AND OPTICS

Velocity of a wave	$v = f\lambda$
Index of refraction	$n = \frac{c}{v}$
Snell's Law	$n_1 \sin \theta_1 = n_2 \sin \theta_2$
Critical angle	$n_1 \sin \theta_1 = n_2 \sin 90$ or
	$\sin\theta_{\rm c} = \frac{n_2}{n_1}$
Mirror & lens equation	$\frac{1}{s_i} + \frac{1}{s_o} = \frac{1}{f}$
Magnification	$\mathbf{M} = \frac{h_i}{h_o} = -\frac{s_i}{s_o}$
Focal length in terms of radius of curvature	$f = \frac{R}{2}$
Diffraction pattern path difference	$m\lambda = dsin\theta$
Diffraction pattern spacing	$\mathbf{x}_{\mathrm{m}} = \frac{m\lambda L}{d}$

ATOMIC AND NUCLEAR PHYSICS

Energy of a photon	E = hf = pc
Maximum kinetic energy of an emitted electron	$-\phi + hf = K_{max}$
deBroglie wavelength of an emitted electron	$\lambda = \frac{h}{p}$
Rest energy of a mass	$\Delta E = (\Delta m)c^2$