ADVANCED PLACEMENT PHYSICS 1 TABLE OF INFORMATION, EFFECTIVE 2015

CONSTANTS AND CONVERSION FACTORS					
Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$	Electron charge magnitude, $e = 1.60 \times 10^{-19} \text{ C}$				
Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$	Coulomb's law constant, $k = 1/4\pi\varepsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$				
Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$	Universal gravitational constant, $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$				
Speed of light, $c = 3.00 \times 10^8 \text{ m/s}$	Acceleration due to gravity at Earth's surface, $g = 9.8 \text{ m/s}^2$				

	meter,	m	kelvin,	K	watt,	W	degree Celsius,	°C
UNIT	kilogram,	kg	hertz,	Hz	coulomb,	C		
SYMBOLS	second,	s	newton,	N	volt,	V		
	ampere,	A	joule,	J	ohm,	Ω		

PREFIXES				
Factor	Prefix	Symbol		
10^{12}	tera	Т		
10 ⁹	giga	G		
10 ⁶	mega	M		
10 ³	kilo	k		
10^{-2}	centi	c		
10^{-3}	milli	m		
10 ⁻⁶	micro	μ		
10 ⁻⁹	nano	n		
10^{-12}	pico	p		

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	o°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	√3	8

The following conventions are used in this exam.

- I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- II. Assume air resistance is negligible unless otherwise stated.
- III. In all situations, positive work is defined as work done on a system.
- IV. The direction of current is conventional current: the direction in which positive charge would drift.
- V. Assume all batteries and meters are ideal unless otherwise stated.

ADVANCED PLACEMENT PHYSICS 1 EQUATIONS, EFFECTIVE 2015

 $v_x = v_{x0} + a_x t$

a = accelerationd = distance

 $x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$ E = energy f = frequency F = force h = height

 $\vec{a} = \frac{\sum \vec{F}}{m} = \frac{\vec{F}_{net}}{m}$

I = rotational inertia K = kinetic energy

k = spring constant

 $\left| \vec{F}_f \right| \le \mu \left| \vec{F}_n \right|$

L = angular momentum $\ell = length$

 $a_c = \frac{v^2}{r}$

m = massP = powerp = momentum

r = radius or separation

 $\Delta \vec{p} = \vec{F} \, \Delta t$

T = periodt = time

 $K = \frac{1}{2}mv^2$

U = potential energy

V = volumev = speed

 $\Delta E = W = F_{\parallel}d = Fd\cos\theta$ W = work done on a system

 $P = \frac{\Delta E}{\Delta t}$

x = position α = angular acceleration

 μ = coefficient of friction θ = angle

 $\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$

 ρ = density

 $\omega = \omega_0 + \alpha t$

 τ = torque ω = angular speed

 $x = A\cos(2\pi ft)$

 $\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I}$

 $\Delta U_g = mg \Delta y$ $T = \frac{2\pi}{\omega} = \frac{1}{f}$

 $T_s = 2\pi \sqrt{\frac{m}{k}}$

 $T_p = 2\pi \sqrt{\frac{\ell}{g}}$

 $\left| \vec{F}_g \right| = G \frac{m_1 m_2}{r^2}$

 $U_G = -\frac{Gm_1m_2}{r}$

 $\tau = r_{\perp}F = rF\sin\theta$

 $L = I\omega$ $\Delta L = \tau \Delta t$

 $K = \frac{1}{2}I\omega^2$

 $U_s = \frac{1}{2}kx^2$

 $\rho = \frac{m}{V}$

 $\left| \vec{F}_E \right| = k \frac{|q_1 q_2|}{r^2}$

A = areaF = force

ELECTRICITY

I = current $\ell = length$ P = power

 $R = \frac{\rho \ell}{A}$

q = chargeR = resistancer = separation

 ρ = resistivity

t = timeV = electric potential

 $P = I \Delta V$ $R_s = \sum_i R_i$

WAVES

f = frequencyv = speed λ = wavelength

GEOMETRY AND TRIGONOMETRY

Rectangle A = bh A = area

C = circumferenceV = volume

Triangle

S = surface areab = base

 $A = \frac{1}{2}bh$

h = height

Circle

 $\ell = length$ w = width

 $A = \pi r^2$

r = radius

 $C = 2\pi r$

Rectangular solid Right triangle $c^2 = a^2 + b^2$

Cylinder

 $V = \pi r^2 \ell$

 $V = \ell w h$

 $S = 2\pi r\ell + 2\pi r^2$

 $S = 4\pi r^2$